Истина и красота. Всемирная история симметрии
Иэн Стюарт. Истина и красота. Всемирная история симметрии. Пер. с англ. Алексея Семихатова. — М.: Астрель, Корпус, 2010. — 461 с. — Серия: Элементы.
Оригинальное название книги: Ian Stewart — Why Beauty is Truth: A History of Symmetry (Joat Enterprises, 2007).
На протяжении многих веков симметрия оставалась ключевым понятием для художников, архитекторов и музыкантов, однако в XX веке ее глубинный смысл оценили также физики и математики. Именно симметрия сегодня лежит в основе таких фундаментальных физических и космологических теорий, как теория относительности, квантовая механика и теория струн. Начиная с древнего Вавилона и заканчивая самыми передовыми рубежами современной науки Иэн Стюарт, британский математик с мировым именем, прослеживает пути изучения симметрии и открытия ее основополагающих законов. Эксцентричный Джироламо Кардано — игрок и забияка эпохи Возрождения, первым решивший кубическое уравнение, гениальный невротик и революционер-неудачник Эварист Галуа, в одиночку создавший теорию групп, горький пьяница Уильям Гамильтон, нацарпавший свое величайшее открытие на каменной кладке моста, и, конечно же, великий Альберт Эйнштейн — судьбы этих неординарных людей и блестящих ученых служат тем эффектным фоном, на котором разворачивается один из самых захватывающих сюжетов в истории науки.
Скачать: [djvu 3,7 MB]
Содержание
Похожее
-
Немецкий математик Леопольд Кронекер писал: «Бог создал целые числа, всё остальное — дело рук человека». Число — основное понятие математики, используемое для количественной характеристики, сравнения, нумерации объектов и их частей. Возникнув ещё в первобытном обществе из потребностей счёта, понятие числа с развитием науки значительно расширилось.
-
Владлен Тиморин
Математик Владлен Тиморин о преимуществах комплексных чисел, кватернионах Гамильтона, восьмимерных числах Кэли и о разнообразии чисел в геометрии.
-
Фрэнк Вильчек
Отрывок из книги нобелевского лауреата Фрэнка Вильчека об идеях красоты и симметрии, лежащих в основе физических концепций.
-
В середине XIX века были сделаны открытия, которые в корне изменили алгебру и привели к ее окончательному отделению от арифметики. История открытия алгебры кватернионов и булевой алгебры.
-
Валерий Опойцев
Комплексные числа: Как возникают и что обеспечивают. Как введение «странных» объектов проливает свет на реальные проблемы. Теория вещественных чисел: Пополнение прямой. Сечения Дедекинда. Зачем это нужно. Системы счисления: Что говорил Плутарх. Позиционная запись чисел. Десятичная система, двоичная. Игра «Ним» на шахматной доске. Двоичный выигрывающий алгоритм. Множества и операции: Наивная теория множеств. Сходство и различия с арифметическими операциями. Булевы структуры. Какими моделями их можно наполнять. Как эти модели перекликаются. Математическая индукция: Аксиома Пеано. Механизм индукции. Примеры.
-
Виктор Клепцын
Действительное число можно сколь угодно точно приблизить рациональными. А насколько хорошим может быть такое приближение – в сравнении с его сложностью? Например, оборвав десятичную запись числа x на k-й цифре после запятой, мы получим приближение x≈a/10^k с ошибкой порядка 1/10^k. И вообще, зафиксировав знаменатель q у приближающей дроби, мы точно можем получить приближение с ошибкой порядка 1/q. А можно ли сделать лучше? Знакомое всем приближение π≈22/7 даёт ошибку порядка 1/1000 – то есть явно сильно лучше, чем можно было бы ожидать. А почему? Повезло ли нам, что у π такое приближение есть? Оказывается, что для любого иррационального числа есть бесконечно много дробей p/q, приближающих его лучше, чем 1/q^2. Это утверждает теорема Дирихле – и мы начнём курс с её немного нестандартного доказательства.
-
BBC
Математик, профессор Маркус дю Сатель рассказывает в этом фильме о том, как законы математики пронизывают своей строгой красотой все формы нашего мира.
-
Документальный фильм «Измерения» – это два часа математики, постепенно выводящие вас в четвёртое измерение.
-
Илья Щуров
Математик Илья Щуров о десятичных дробях, трансцендентности и иррациональности числа Пи.
-
Жак Сезиано
За два тысячелетия произошло три важных расширения числовой области. Во-первых, около 450 г. до н.э. учёные школы Пифагора доказали существование иррациональных чисел. Их начальной целью было числовое выражение диагонали единичного квадрата. Во-вторых, в XIII-XV веках европейские учёные, решая системы линейных уравнений, допустили возможность одного отрицательного решения. И, в-третьих, в 1572 г. итальянский алгебраист Рафаэль Бомбелли использовал комплексные числа для получения действительного решения некоего кубического уравнения.
Далее >>>
|
|