Как возникают и что обеспечивают. Как введение «странных» объектов проливает свет на реальные проблемы.
2. Теория вещественных чисел
Пополнение прямой. Сечения Дедекинда. Зачем это нужно.
3. Системы счисления
Что говорил Плутарх. Позиционная запись чисел. Десятичная система, двоичная. Игра «Ним» на шахматной доске. Двоичный выигрывающий алгоритм.
4. Множества и операции
Наивная теория множеств. Сходство и различия с арифметическими операциями. Булевы структуры. Какими моделями их можно наполнять. Как эти модели перекликаются.
5. Математическая индукция
Аксиома Пеано. Механизм индукции. Примеры.
Опойцев Валерий Иванович, доктор физико-математических наук, профессор МФТИ, гл. н. с. ИПУ РАН.
Немецкий математик Леопольд Кронекер писал: «Бог создал целые числа, всё остальное — дело рук человека». Число — основное понятие математики, используемое для количественной характеристики, сравнения, нумерации объектов и их частей. Возникнув ещё в первобытном обществе из потребностей счёта, понятие числа с развитием науки значительно расширилось.
Лекции читает Аносов Дмитрий Викторович, доктор физико-математических наук, профессор, академик РАН. Летняя школа «Современная математика», г. Дубна. 16-18 июля 2002 г.
Целью этой книги является строгое определение чисел, многочленов и алгебраических дробей и обоснование их свойств, уже известных из школы, а не ознакомление читателя с новыми свойствами. Поэтому читатель не найдет здесь новых для него фактов (за исключением, быть может, некоторых свойств, действительных и комплексных чисел), но узнает, как доказываются вещи, хорошо ему известные, начиная с «дважды два — четыре» и кончая правилами действий с многочленами и алгебраическими дробями. Зато читатель познакомится с рядом общих понятий, играющих в алгебре основную роль.
ТФКП — теория функций комплексной переменной, эквивалент «теории аналитических функций». Математическая дисциплина второго круга образования — не в каждом техническом ВУЗе преподаётся. А жаль. Потому что ТФКП необыкновенно красива и в своей основе достаточно проста. Ибо в римановы пространства и конформные преобразования не обязательно заглядывать без особой надобности. Но и без них в лучах «аналитических функций» многое в нижележащих слоях математики озаряется буквально волшебным светом. Проясняется и упрощается. Вскрываются внутренние механизмы, обнажаются загадки. Поэтому ТФКП, по крайней мере в «данном исполнении», можно рекомендовать для самообразования. Простое изложение может оказаться полезным и при углублённом изучении предмета, когда подробности мешают видеть общую картину.
Понятие числовой прямой сформировалось в конце XIX — начале XX веков. Мы рассмотрим этапы развития этого понятия в работах М. Штифеля (1544 г.), Галилея (1633 г.), Эйлера (1748 г.), Ламберта (1766 г.), Больцано (1830-е гг.), Мере (1869, 1872 гг.), Кантора (1872г.), Гейне (1872 г.), Дедекинда (1872 г.) и Вейерштрасса (с 1861 по 1885 гг).
Мнимые числа, несмотря на своё название, вполне реальны. По крайней мере, в той же степени, что и отрицательные числа, иррациональные или ноль. Хоть их не найти на привычной нам числовой оси, мнимые числа позволяют справляться с задачами, над которыми сотни лет бились умнейшие математики, а их состоятельность проверена на практике учёными и инженерами.
Труды Кантора в России начали переводить и пересказывать с 1892 года в Одессе, Москве, Томске, Казани, Петрограде. Идеи теории множеств были с энтузиазмом восприняты в России как математиками, так и философами, в их популяризации приняли участие такие известные учёные, как И.Ю. Тимченко, С.О. Шатуновский, А.В. Васильев, П.А. Флоренский, Б.К. Млодзеевский, В.Л. Некрасов, И.И. Жегалкин, П.С. Юшкевич-отец, А.И. Фет, А.П. Юшкевич-сын, А.Н. Колмогоров, Ф.А. Медведев. В Москве в 1911 году возникла школа теории функций и дескриптивной теории множеств. В 1970 году академик Понтрягин оценил теорию множеств как ненужную для молодых математиков, и подготовленный перевод трудов Кантора не вышел в свет. Мы впервые расскажем о трагической судьбе этого перевода.
За два тысячелетия произошло три важных расширения числовой области. Во-первых, около 450 г. до н.э. учёные школы Пифагора доказали существование иррациональных чисел. Их начальной целью было числовое выражение диагонали единичного квадрата. Во-вторых, в XIII-XV веках европейские учёные, решая системы линейных уравнений, допустили возможность одного отрицательного решения. И, в-третьих, в 1572 г. итальянский алгебраист Рафаэль Бомбелли использовал комплексные числа для получения действительного решения некоего кубического уравнения.
В середине XIX века были сделаны открытия, которые в корне изменили алгебру и привели к ее окончательному отделению от арифметики. История открытия алгебры кватернионов и булевой алгебры.