Числа и многочлены
Проскуряков И. В. Числа и многочлены. Изд. 2-е. — М.: Просвещение, 1965. — 282 с.
Целью этой книги является строгое определение чисел, многочленов и алгебраических дробей и обоснование их свойств, уже известных из школы, а не ознакомление читателя с новыми свойствами. Поэтому читатель не найдет здесь новых для него фактов (за исключением, быть может, некоторых свойств, действительных и комплексных чисел), но узнает, как доказываются вещи, хорошо ему известные, начиная с «дважды два — четыре» и кончая правилами действий с многочленами и алгебраическими дробями. Зато читатель познакомится с рядом общих понятий, играющих в алгебре основную роль.
Книга рассчитана на преподавателей математики в старших классах средней школы, но не касается вопросов методики преподавания. Ее можно рекомендовать также студентам педагогических и учительских институтов, а также школьникам старших классов, интересующимся обоснованием понятий числа и многочлена. В первых двух главах вводятся общие понятия, необходимые для понимания всей книги. В последующих главах строятся натуральные, целые, рациональные, действительные и комплексные числа, многочлены и алгебраические дроби.
Скачать: [djvu 4,9 MB]
Похожее
-
Питер Эткинз
Эта книга предназначена для широкого круга читателей, желающих узнать больше об окружающем нас мире и о самих себе. Автор, известный ученый и популяризатор науки, с необычайной ясностью и глубиной объясняет устройство Вселенной, тайны квантового мира и генетики, эволюцию жизни и показывает важность математики для познания всей природы и человеческого разума в частности.
-
Если вы, уважаемый мой читатель, имеете обыкновение проводить много времени в интернете, вы наверняка уже видели картинку с замысловатым определением единицы. Наверняка также вы задавались вопросом: что, чёрт подери, здесь написано? Формула из этой цитаты интересна тем, что у человека, имеющего высшее математическое образование, этот вопрос возникает столь же неумолимо, как и у любознательного семиклассника.
-
Наверное, каждый хотя бы раз в жизни слышал это выражение. Действительно, что может быть проще? Однако я знавал преподавателя математического анализа, который, услыхав подобное, ехидно улыбался в усы и предлагал доказать этот факт. После этого у говорившего обычно случался когнитивный диссонанс. И действительно, как же доказать, что 2 × 2 = 4?
-
Брайан Дэвис
На протяжении большей части XX столетия в «чистой» математике царило замечательное единодушие относительно того, как нужно представлять результаты. Весь предмет сводился к комплексу теорем, каждая из которых, в конечном счете, выводилась из фиксированного набора аксиом путем так называемого строгого логического доказательства. В отдельных разделах математики, таких, например, как арифметика Пеано, справедливость аксиоматики выглядела самоочевидной, однако во многих случаях аксиомы попросту очерчивали рассматриваемую область вопросов. Для математиков, если только они не выходили за рамки математики, выступая в роли философов-любителей, принципиального различия между изобретением и открытием новых концепций не было.
-
Немецкий математик Леопольд Кронекер писал: «Бог создал целые числа, всё остальное — дело рук человека». Число — основное понятие математики, используемое для количественной характеристики, сравнения, нумерации объектов и их частей. Возникнув ещё в первобытном обществе из потребностей счёта, понятие числа с развитием науки значительно расширилось.
-
Валерий Опойцев
Комплексные числа: Как возникают и что обеспечивают. Как введение «странных» объектов проливает свет на реальные проблемы. Теория вещественных чисел: Пополнение прямой. Сечения Дедекинда. Зачем это нужно. Системы счисления: Что говорил Плутарх. Позиционная запись чисел. Десятичная система, двоичная. Игра «Ним» на шахматной доске. Двоичный выигрывающий алгоритм. Множества и операции: Наивная теория множеств. Сходство и различия с арифметическими операциями. Булевы структуры. Какими моделями их можно наполнять. Как эти модели перекликаются. Математическая индукция: Аксиома Пеано. Механизм индукции. Примеры.
-
Леон Тахтаджян
Это будут четыре коротеньких рассказика. Начнем мы с чисел, потом поговорим о движении, об изменении, затем мы обсудим формы и размеры, а затем — начало и конец. В таком несколько зашифрованном стиле мы и попробуем посмотреть на математику изнутри и снаружи, причем именно как на предмет. То, о чем математики мыслят и чем живут, — об этом мы с вами сможем поговорить потом. Мы увидим, что некоторые вещи, которые нам кажутся очевидными, таковыми совсем не являются. Простые вещи могут оказаться сложными, а сложные — простыми.
-
Почему минус один умножить на минус один равно плюс один? Почему минус один умножить на плюс один равно минус один? Проще всего ответить: «Потому что таковы правила действий над отрицательными числами». Правила, которые мы учим в школе и применяем всю жизнь. Однако учебники не объясняют, почему правила именно такие. Мы сначала постараемся понять это, исходя из истории развития арифметики, а потом ответим на этот вопрос с точки зрения современной математики.
-
Жак Сезиано
За два тысячелетия произошло три важных расширения числовой области. Во-первых, около 450 г. до н.э. учёные школы Пифагора доказали существование иррациональных чисел. Их начальной целью было числовое выражение диагонали единичного квадрата. Во-вторых, в XIII-XV веках европейские учёные, решая системы линейных уравнений, допустили возможность одного отрицательного решения. И, в-третьих, в 1572 г. итальянский алгебраист Рафаэль Бомбелли использовал комплексные числа для получения действительного решения некоего кубического уравнения.
-
Жак Сезиано
Мы знаем о Диофанте немного. Кажется, он жил в Александрии. Никто из греческих математиков не упоминает его до IV века, так что он вероятно жил в середине III века. Самая главная работа Диофанта, «Арифметика» (Ἀριθμητικά), состоялась в начале из 13 «книгах» (βιβλία), т. е. главах. Мы сегодня имеем 10 из них, а именно: 6 в греческом тексте и 4 других в средневековом арабском переводе, место которых в середине греческих книг: книги I-III по-гречески, IV-VII по-арабски, VIII-X по-гречески. «Арифметика» Диофанта прежде всего собрание задач, всего около 260. Теории, по правде говоря, нет; имеются только общие инструкции в введении книги, и частные замечания в некоторых задачах, когда нужно. «Арифметика» уже имеет черты алгебраического трактата. Сперва Диофант пользуется разными знаками, чтобы выражать неизвестное и его степени, также и некоторые вычисления; как и все алгебраические символики средних веков, его символика происходит от математических слов. Потом, Диофант объясняет, как решить задачу алгебраическим способом. Но задачи Диофанта не алгебраические в обычном смысле, потому что почти все сводятся к решению неопределённого уравнения или систем таких уравнений.
Далее >>>
|
|