Десять великих идей науки. Как устроен наш мир
Питер Эткинз. Десять великих идей науки. Как устроен наш мир
(Peter Atkins. Galileo's Finger: The Ten Great Ideas of Science)
Издательская группа АСТ, Издательство «Астрель», 2008 г.
Перевод с английского: В. Герцик
Технический редактор: Е. Кудиярова
Компьютерная верстка: Е. Илюшина
Эта книга предназначена для широкого круга читателей, желающих узнать больше об окружающем нас мире и о самих себе. Автор, известный ученый и популяризатор науки, с необычайной ясностью и глубиной объясняет устройство Вселенной, тайны квантового мира и генетики, эволюцию жизни и показывает важность математики для познания всей природы и человеческого разума в частности.
Скачать:
[pdf 16 MB]
Содержание
Похожее
-
Проскуряков И. В.
Целью этой книги является строгое определение чисел, многочленов и алгебраических дробей и обоснование их свойств, уже известных из школы, а не ознакомление читателя с новыми свойствами. Поэтому читатель не найдет здесь новых для него фактов (за исключением, быть может, некоторых свойств, действительных и комплексных чисел), но узнает, как доказываются вещи, хорошо ему известные, начиная с «дважды два — четыре» и кончая правилами действий с многочленами и алгебраическими дробями. Зато читатель познакомится с рядом общих понятий, играющих в алгебре основную роль.
-
Владимир Успенский
Знаменитая Теорема Гёделя о неполноте имеет две версии — синтаксическую (объявленную и доказанную самим Гёделем) и семантическую (чаще всего фигурирующую в популярных рассуждениях о великой Теореме). Семантическая версия утверждает, что какую бы систему формальных доказательств ни придумать, в языке найдутся истинные утверждения, не доказуемые в рамках предложенной системы. Таким образом, семантическая версия исходит из того, что некоторые выражения языка выражают осмысленные утверждения, являющиеся истинными или ложными. Синтаксическая версия не опирается на то, что какие бы то ни было выражения языка имеют какой-то смысл, она смотрит на выражения как на синтаксические конструкции, то есть как на цепочки символов, организованные по определённым правилам.
-
Эрвин Шрёдингер
Эрвин Рудольф Йозеф Александр Шредингер - австрийский физик-теоретик, лауреат Нобелевской премии по физике. Один из разработчиков квантовой механики и волновой теории материи. В 1945 г. Шредингер пишет книгу "Что такое жизнь с точки зрения физики?", оказавшую существенное влияние на развитие биофизики и молекулярной биологии. В этой книге внимательно рассмотрено несколько важнейших проблем. Основополагающим является вопрос: "Как могут физика и химия объяснить те явления в пространстве и времени, которые имеют место внутри живого организма?" Прочтение этой книги даст не только обширный теоретический материал, но и заставит задуматься над тем, что же в сущности есть жизнь?
-
Владимир Успенский
В отличие от метрической теории алгоритмов, дескриптивная теория не занимается измерением ресурсов (таких как время, объём памяти), затрачиваемых при применении алгоритма к его возможным исходным данным (в другой терминологии — к его входам). Её интересует лишь, возможен алгоритм для решения данной задачи или нет. Начальные понятия дескриптивной теории алгоритмов суть: конструктивный обьект, алгоритм, число шагов алгоритма, вычислимая функция, перечислимое множество, разрешимое множество, сводимость нумераций, главная вычислимая нумерация, вычислимая операция.
-
Алексей Сосинский
Теорема Гёделя, наряду с открытием теории относительности, квантовой механики и ДНК, обычно рассматривается как крупнейшее научное достижение ХХ века. Почему? В чем ее суть? Каково ее значение? Эти вопросы в своей лекции раскрывает Алексей Брониславович Сосинский, математик, профессор Независимого московского университета, офицер Ордена академических пальм Французской Республики, лауреат премии Правительства РФ в области образования 2012 года. В частности, были даны несколько разных ее формулировок, описаны три подхода к ее доказательству (Колмогорова, Чейтина и самого Гёделя), и объяснено ее значение для математики, физики, компьютерной науки и философии.
-
В Евклидовой геометрии любое утверждение либо ложно, либо истинно, и третьего не дано. И в начале ХХ века математики наивно полагали, что такая же ситуация должна наблюдаться в любой логически непротиворечивой системе. И тут в 1931 году какой-то венский очкарик — математик Курт Гёдель — взял и опубликовал короткую статью, попросту опрокинувшую весь мир так называемой «математической логики». Гёдель попросту доказал следующее удивительное свойство любой системы аксиом: всякая система математических аксиом начиная с определенного уровня сложности либо внутренне противоречива, либо неполна.
-
Владимир Успенский
Теорема Гёделя о неполноте — едва ли не самая знаменитая теорема математики. Она утверждает, что какие бы способы доказывания ни предложить, в любом достаточно богатом языке найдутся истинные, но не доказуемые утверждения. Богатство языка есть его способность выражать факты. Оказывается, что для целей теоремы Гёделя богатство языка достаточно понимать как его способность выражать принадлежность натуральных чисел перечислимым множествам.
-
Алексей Сосинский
Курс занятий посвящен тому, что в математике сделать нельзя. Но речь пойдет не о запрещенных действиях (типа деления на ноль или квадратуры круга), а об отсутствии общих методов для решения некоторых широких классов задач. Начиная от определения вычислимой функции (через машину Тюринга), мы узнаем про существование универсальной вычислимой функции, и как следствие – о существовании не вычислимых функций. Отсюда мы поймем, какие задачи никакой компьютер (даже сколь угодно мощный) решить не может в принципе. Затем мы определим «Колмогоровскую сложность» и изучим ряд ее «нехороших» свойств, именно, не вычислимость некоторых связанных с ней характеристик. Эти свойства сыграют решающую роль в доказательстве теоремы Гёделя о неполноте – одного из самых значительных научных открытий ХХ-го века.
-
Джордана Цепелевич
Всякая надежда на создание единой математической теории, амбициозного проекта, который был предложен математиком Давидом Гильбертом в 19 веке и продолжил существовать, поддерживаемый многими, в 20 столетии, рухнула. Основы математики были далеко не столь надежными, как того хотел бы Гильберт. А Гëдель своими теоремами ясно продемонстрировал, что любая система аксиом, какой бы обширной она ни была, уязвима для возникновения невосполнимых пробелов. Попытки же восполнить их созданием более полной системы породили бы только бóльшее количество утверждений без доказательств — так что и тут возникнет необходимость в усовершенствовании системы, и так далее до бесконечности. И случилось нечто странное: математики решили не обращать на это внимания. Они посчитали, что неполнота систем не имеет непосредственного влияния на их работу.
-
Михаил Никитин
В научных представлениях о происхождении жизни в последнее десятилетие происходит настоящая революция, и она далеко не завершена. К сожалению, эта информация доступна в основном только на английском языке. Цикл статей, предлагаемый вниманию читателей, отчасти восполнит этот пробел.
Далее >>>
|
|