Глава десятая. Арифметика. Пределы разума
Бог создал целые числа, все остальное есть дело рук человека.
Леопольд Кронекер
Великая идея: если арифметика состоятельна, то она неполна
Одним из тончайших творений человеческого ума является математика, ибо она не только представляет собой апофеоз рационального мышления, но и также образует позвоночный столб, который придает научным умозрениям достаточную четкость для сопоставления их с опытом. Научные гипотезы сами по себе желеобразны; для того чтобы их было можно подвергнуть проверке и встроить в сетку понятий, составляющих физическую науку, они нуждаются в жесткости математических формулировок. Широко распространено мнение, что математика не является наукой, поскольку она может, вольно или невольно, раскручивать Вселенные своих собственных дискурсов, Вселенные, для которых, если не считать требования логической строгости, нет необходимости иметь сколько-нибудь значительные связи с миром, в котором мы, как нам кажется, обитаем. Как таковая, математика в этой книге может казаться контрабандным товаром. Однако, поскольку она занимает центральное положение в научном методе мышления, математику приветствуют как дорогого гостя и отводят ей почетное место среди других наук. Более того, победное шествие абстракции в физических науках и шевеление абстракции в чреве биологии делают поиски места, где кончается математика и начинается наука, не только затруднительными, но и беспочвенными, похожими на попытку нанести на карту очертания утреннего тумана.
Существует еще одна, связанная, впрочем, с изложенной выше, причина, по которой оказывается уместным включить сюда математику. Наиболее продуктивные ученые, являясь личностями прагматичными и рассудительными, просто высоко ценят удивительную способность математики служить описанием физического мира и благодарны за то, что в их руках находится такое изысканное и могущественное интеллектуальное оружие. Но есть и такие, кто идет дальше благодарностей и приложений и желает знать, указывает ли этот плодотворный союз научного наблюдения и математического описания на более глубокое свойство математики, которое еще не совсем идентифицировано и, определенно, совсем еще не объяснено. Венгеро-американский физик-теоретик Юджин Пол (Jénó Pál) Вигнер (1902-95), столь много сделавший для формулирования математической теории симметрии и ее приложения к физическим проблемам, был озадачен замечательной способностью математики служить языком описания мира:
Чудесная возможность пользоваться языком математики для формулирования законов физики является волшебным даром, который мы не понимаем и которого не заслуживаем.
Эйнштейн высказал близкую мысль, когда заметил, что наиболее трудной для постижения чертой мира является то, что он постижим.
Я намереваюсь посвятить эту главу скорее разговорам о математике, чем изложению самой математики, или даже — исключая те места, где я сочту это уместным, или неуместным, но занимательным — истории идей, на которых математика выросла. Иными словами, я буду говорить о том, что, по их мнению, делают математики, когда они придумывают свои теоремы или решают свои уравнения. Я не буду касаться деталей того, что они делают, поэтому вам не придется проходить доказательство теоремы Пифагора или правила решения квадратных уравнений. Как таковая, эта глава больше касается философии математики, в частности
математической онтологии, оснований этого предмета, чем техники, которую каждый из нас изучал либо с восхищением, либо с чувством отвращения и страха. С другой стороны, я намерен использовать эту главу для проверки обоснованности часто цитируемого, но все же пристрастного изречения Бертрана Рассела:
Чистая математика — это предмет, в котором мы не знаем, о чем мы говорим, и верно ли то, что мы говорим.
Я принимаю во внимание тот факт, что большинство моих читателей будет испытывать дискомфорт и, возможно, подавленность от воспоминаний о математике, или, по крайней мере, будет обеспокоено предвосхищением того, что потребуется для понимания подобной главы. Успокойтесь: это не учебник. Я собираюсь сосредоточиться на обворожительных фрагментах и буду заранее указывать места, которые можно, по крайней мере при первом чтении, перепрыгнуть, не теряя нити повествования. Более того, вам следует иметь в виду, что эта глава не является математической; это рассказ
о математике.
Мое последнее вводное замечание начертает еще одну перспективу для этой главы. Мы прошли через последовательность все возрастающих абстракций, наблюдая, как знакомые понятия растворяются в более могущественных понятиях, их сменивших. Математика является высшей точкой нашего путешествия, в которой абстракция является самой сутью: математика является чистой, голой, развоплотившейся абстракцией. А потому, нам следует ожидать необычайного могущества.
Фундаментальной трудностью математики является то, что она пытается оперировать
натуральными числами, числами повседневного счета 0, 1, 2, 3, …, которые широко используются, но изначально не определены. Натуральные числа используются как
количественные числа, для обозначения номера предмета в наборе, и как
порядковые числа, для упорядочения предметов в список. Это числа соответствуют различным понятиям, и в языке мы даем им разные названия:
один,
два, … для количественных чисел, и
первый,
второй, … для порядковых чисел. Большая часть того, что я должен сказать, будет относиться к натуральным числам в качестве количественных чисел.
Как мы вскоре увидим, с тех пор, как математики начали, в своей характерной глубокомысленной манере, размышлять о натуральных числах, стало очевидно, что удивительным является даже то, что мы вообще можем считать. Ведь этих чисел так мало (всего лишь бесконечность), и они столь редки, что с некоторой точки зрения удивительно, как древним людям удалось наткнуться на них в первый раз. Мы уже можем начать понимать некоторые из проблем, беспокоящих математиков даже на этой ранней стадии обсуждения. Например, действительно ли количественные числа продолжаются до бесконечности, или более верным, чем вечно марширующие без всякого пункта назначения числа, представлением является так называемая
ультрафинитистская математика, в которой натуральные числа выдыхаются до того, как достигнут бесконечности? И поскольку, если быть честными, мы не способны непосредственно воспринимать бесконечность, можно ли полагаться на математические доказательства, содержащие обращения к бесконечности? Многие склонны отвечать на последний вопрос отрицательно, и делают все, чтобы не подпустить бесконечность на расстояние ближе вытянутой руки.
Если мы вернемся к начальным временам счета, когда бы они ни были, мы обнаружим глубокий резонанс с тем, что принимается в качестве счета сегодня (тема, которую мы исследуем позже). Счету в большой мере помогают счетные приспособления, такие как насечки на палочках, бусины четок, сотня бусинок мусульманских
субха, используемых для повторения девяноста девяти атрибутов Аллаха (с одной дополнительной бусиной, отмечающей начало счета), шарики сухого навоза и столбики голышей (по латыни
calculi, откуда произошло слово «калькуляция»). Универсальным портативным счетным прибором является человеческое тело с его различными выемками и выпуклостями. Островитяне Торресова пролива достигли в счете по телу 33 (мизинец правой ноги), проходя по пути 8 (правое плечо), 26 (правое бедро) и 28 (правая лодыжка), и установили для своего счета основание 33.
Человеческая рука, однако, гораздо более удобный инструмент счета, особенно когда человек полностью одет. Более того, рука обладает гибкостью и способна демонстрировать как количественные, так и порядковые числа: количественные числа показывают, выставляя соответствующее число пальцев одновременно, а порядковые числа демонстрируют, последовательно разгибая пальцы. Таким образом, счет «с основанием 10», как называют нашу общепринятую систему, является естественным следствием анатомии человека.
Хотя фундамент счета постепенно установился на основании 10, используемом сегодня почти всюду, были и остаются некоторые, отклонения. В языке апи, на котором говорят жители Новых Гебрид, счет ведется по основанию 5, и следы того же основания можно отыскать в некоторых языках Африки. Отголоски счета по основанию 12 обнаруживаются в употреблении нами дюжины. Вавилоняне предпочитали основание 60 по причинам, которые все еще остаются темными, и их выбор удержался в нашем способе деления времени и круга, с малыми «минутами» и вторичным (second) делением этих минут на секунды. Существует предположение, что шумеры Вавилона остановились на 60 (но без символа 0) в результате слияния двух культур, одна из которых использовала основание 10 (с простыми делителями 2 и 5), а другая основание 12 (с простыми делителями 2 и 3), с наименьшим общим произведением делителей (2×5) × (2×3) = 60. Основание 60 так никогда и не привилось в повседневном счете, поскольку требовалось выучить очень большое число обозначений для 60 различных чисел, необходимое для схемы (0, 1, …, 8, 9, ♦,
”, …, *[наше 59], 10[наше 60], 11, …). Латынь и французский несут следы основания 20, в
undeviginti (19 = 20 − 1) и
quatre-vingts (4 × 20 = 80) соответственно, и этот след можно различить в английском
score (20) и датском
tresinstyve (три раза по двадцать) для 60; основание 20 все еще используется у некоторых племен индейцев в Венесуэле, эскимосов Гренландии, айнов Японии и запотеков Мексики. Заслуживают жалости несчастные майя, чей астрономический календарь имел похожий на раковину символ для 0 и основание 20, но третий разряд («сотни») был основан на 18 × 20, вместо 20 × 20, четвертый разряд был основан на 18 × 20 × 20 и так далее. Вероятно, они пытались упростить астрономические вычисления, такие как 18 × 20 = 360, длина года у майя.
Однако счет на пальцах неудобен для ведения записей, и когда появились древние первовычислители и начали заниматься своим ремеслом, постоянное освоение различных сред физического мира медленно проявлялось в виде приспособлений для счета и записей сделок. Шумеры использовали довольно утонченную форму клинописных обозначений чисел, аттические греки ввели буквенные обозначения, с символами, подобными Δ (δεκα, дека) для 10 и M для 10 000 (μυριοι, муриои). До сих пор еще живы в качестве цифр повседневного пользования римские цифры. В дополнение к очевидным I, II, …, которые мы теперь записываем как 1, 2, …, немецкий историк Теодор Моммзен (1817-1903) умозаключил, что V (=5) представляет растопыренную ладонь, X (=10) — это сочетание двух ладоней, M (=1000) есть распад на части символа Φ, принявший вид (|), a D (=500) это буквально половина этого символа.
Знакомые нам «арабские» цифры, видимо, возникли в Индии в период времени до девятого века, возможно, как способ представления абака. Западные ученые назвали их «арабскими» потому, что в то время арабская наука преобладала, и пишущие обращались к ее авторитету. Происхождение форм начертания большинства цифр остается темным, но для 1 оно очевидно, 2 является, возможно, комбинацией двух горизонтальных штрихов, а 3 — трех. Человеческие существа, по-видимому, не способны определять на глаз число предметов, если оно более четырех, и, следовательно, цифры от 4 до 9, видимо, должны были возникнуть как сокращенные формы обозначения соответствующих наборов штрихов.
Эволюция наших современных символов может быть прослежена до их написания в Брахми, очень древней форме индийского письма обнаруженной в надписях Ашоки, третьего царя династии Маурья из Магадхи, который правил Индией от 273 до 235 г. до н.э. (рис. 10.1); само это письмо, по-видимому, произошло от западной семитской традиции как разновидность арамейского. Эти цифры предложил невосприимчивой Европе в конце десятого столетия монах Герберт Ауриллак (около 945-1003), ставший папой Сильвестром II в году, который обозначался многообещающей цифрой 1000, но, к разочарованию многих, так и не стал годом апокалипсиса. Мягкий напор нововведения не преодолел сопротивления консервативных церковников, которые предпочли прилепиться к классической римской традиции, несмотря на почти полную невозможность пользоваться ею в арифметике. Самое первое появление новых цифр зарегистрировано в
Codex Vigilanus, который скопировал монах Вигила в монастыре Альбеда, Испания, в 976 г.
Рис. 10.1. Так называемые арабские цифры произошли от индийских символов, которые можно проследить до письма Брахми и далее, до более глубоких корней в семитской традиции. Верхняя строка показывает четыре цифры третьего века до н.э. из эдикта Ашоки, писанного на Брахми. Вторая строка показывает цифры третьего века н.э. из источника, найденного в штате Уттар Прадеш.
|
Ноль (zero, от арабского
sifr, пустой) первоначально обозначался точкой, как и поныне обозначается в арабском письме. Символ бесконечности, ∞, как волк в ночи, прокрался в стан чисел, чтобы в нужный момент наброситься на них. Его впервые использовал в 1655 г. страдавший бессонницей Джон Уоллис (1616-1703), оксфордский математик и один из основателей Королевского общества, в своем
Трактате о конических сечениях. Он выбрал этот символ для обозначения кривой, которую можно продолжать бесконечно, возможно, надеясь заснуть, продолжая ее.
Неприятности (то есть математика) начались, когда числа стали различными способами комбинировать. Когда мы начинаем манипулировать натуральными числами, используя такие операции, как вычитание и деление, когда изобретательный интеллект обременяет себя ношей практического опыта, мы порождаем числа, имеющие мало общего с количественными числами. Сперва мы рассмотрим символы для этих операций, а затем увидим, как, применяя их к натуральным числам, мы порождаем новые типы чисел; их сводка представлена на рис. 10.2, и, вероятно, будет полезно держать эту иллюстрацию в уме, читая последующий текст. В начальные для математики времена уравнения были «риторическими», в том смысле, что они сжато выражались словами. Гораздо большая ясность, а с большей ясностью и большие возможности для манипуляций, возникла после введения символов, определяющих операции.
Рис. 10.2. Здесь представлена сводка основных типов чисел, с которыми мы встречаемся в этой главе. Натуральные числа являются числами счета; их расширение на отрицательные значения порождает целые числа. Между целыми числами расположены рациональные числа, то есть числа, получаемые делением одного целого числа на другое. Гораздо большую плотность имеют иррациональные числа, которые нельзя получить таким способом. Действительные числа, состоящие из целых чисел, рациональных чисел и иррациональных чисел, соответствуют точкам, образующим прямую линию, уходящую в бесконечность в обоих направлениях. Алгебраические числа являются числами, которые можно получить в виде решений алгебраических уравнений, а трансцендентные числа являются числами, которые нельзя получить таким способом. Некоторые алгебраические числа рациональны, другие иррациональны; все трансцендентные числа иррациональны.
|
Знак сложения, «+», возможно, произведен от курсивного написания
et и впервые появился в немецком манускрипте пятнадцатого века, а знак «−» для вычитания мог просто указывать на отделение. Знак умножения, «×», возможно, произошел от символа, использовавшегося для вычисления пропорций, которое включает перекрестные перемножения, и впервые появился в труде
Clavis mathematicae, опубликованном в 1631 г. Уильямом Отредом (1574-1660), изобретателем раннего варианта логарифмической линейки. Немецкий математик Готфрид Лейбниц (1646-1716) счел, что знак × слишком легко спутать с
x, и в 1698 г. предложил использовать вместо него простую точку, так чтобы
a.b обозначало умножение
a на
b. Он также предпочел для деления знак «:», но сначала в шведском тексте 1659 г. для деления был использован символ «÷», ранее обозначавший вычитание.
Знак равенства, «=», образованный двумя горизонтальными линиями, был введен в
The whetstone of witte (Оселок для ума) (1557) английским математиком Робертом Рэкодом (около 1510-58), который познакомил Англию с алгеброй, придумал популярные названия для учебников (включая
The whetstone (Оселок), The grounde of artes (Основа искусств), для введения в арифметику, и
The castle of knowledge (Твердыня знания) для учебника астрономии), но тем не менее умер в долговой тюрьме. Рэкод писал:
И чтобы избежать утомительных повторений этих слов «является равным», я буду рисовать, как часто уже делал это для облегчения работы, две параллельные линии одинаковой длины, так как нет двух вещей, которые были бы равны в большей мере.
Знакомый теперь знак Рэкода «=» вел долгие войны с «||» и различными обозначениями, основанными на ae, сокращении от
aequalis, прежде чем наконец одержать триумфальную победу.
Сложение и умножение натуральных чисел порождают просто другие натуральные числа. Например, 2 + 5 = 7 есть натуральное число, а 2 × 5 = 10 еще одно натуральное число. Однако вычитание порождает новый класс чисел. Так, если мы вычтем 3 из 2, мы получим −1, что расширяет поле нашего дискурса от натуральных чисел до
целых: …, −2, −1, 0, 1, 2, …. Отрицательные числа в момент их появления должны были очень озадачивать, поскольку людям, привыкшим лишь к пересчитыванию, было трудно понять, что такое «меньше, чем ничего».
[48]
Хотя умножение натуральных чисел дает только натуральные числа, понятие умножения приводит к определению подкласса натуральных чисел, называемых
простыми числами, то есть чисел, не являющихся произведением других натуральных чисел (кроме единицы и себя самого). Так, несколькими первыми простыми числами натурального ряда являются 2, 3, 5, 7, 11, 13, 17, …. Такое число, как 15, не является простым, так как может быть записано в виде 3 × 5; с другой стороны, 17 является простым числом, потому что его нельзя записать в виде произведения других натуральных чисел. Простые числа находились и продолжают находиться в центре повышенного внимания тех, кто заворожен числами, поскольку они, видимо, ведут себя во многом подобно фундаментальным «атомам» натуральных чисел: с точки зрения операции умножения они являются числами, из которых можно построить все остальные числа. Этот фундаментальный характер является сутью содержания
фундаментальной теоремы арифметики Евклида, которая утверждает, что каждое представление натурального числа произведением простых чисел является
единственным. Например, такое число, как 9 365 811, может быть выражено в виде произведения простых чисел только одним способом (в данном случае, как 3 × 7
2 × 13
3 × 29). Эта фундаментальная теорема является основой современных процедур кодирования, в которых используются произведения двух больших простых чисел, так что изучение простых чисел не является просто делом бесстрастной математики, а играет центральную роль в обеспечении безопасности коммерческих операций и приватности связей между отдельными людьми и армиями.
Многие свойства простых чисел уже известны, но некоторые предположения еще не доказаны (а, возможно, и неверны). Одним из точно установленных фактов, известным еще Евклиду, является то, что количество простых чисел неограниченно; простые числа продолжаются без конца. На сегодняшний день самым большим известным простым числом является 2
13466917 − 1. Это число является примером
простых чисел Мерсенна, простых чисел, имеющих форму
2p − 1, где
p само есть простое число. Оно было обнаружено 14 ноября 2001 г. и потребовало бы для полной записи 4 миллиона цифр (более точно, 4 053 946), что соответствует примерно восьми книгам, размером с эту. Огромные простые числа, имеющие более чем тысячу знаков, называются «титаническими». Простые числа встречаются все реже и реже по мере их возрастания, но между любым заданным натуральным числом и его удвоением всегда найдется по крайней мере одно простое число. Например, вы можете быть уверены, что существует по крайней мере одно простое число между 1 миллиардом и 2 миллиардами; на самом деле, их миллионы. Некоторые простые числа группируются. Например, существует много «близнецов», то есть простых чисел, разность между которыми равна 2; например, 11 и 13 являются близнецами.
Гипотеза о близнецах (только гипотеза) состоит в том, что существует бесконечное число близнецов, и поэтому близнецы, как и сами простые числа, продолжают встречаться без конца. Известными к настоящему времени самыми большими близнецами являются 33 218 925 × 2
169690 − 1 и 33 218 925 × 2
169690 + 1 (эта пара обнаружена в 2002 г., и каждое из чисел записывается 51 090 цифрами).
Есть множество других весьма причудливых свойств простых чисел. Например, обладавший необычайным воображением польско-американский математик Станислав Улам (1909-84) обнаружил, что, если вы запишете все натуральные числа по спирали, так что 1 окажется в центре, 2 справа, 3 над 2, 4 над 1, 5 слева от 4 и так далее, и пометите все простые числа, то они будут иметь тенденцию попадать на диагональные линии (рис. 10.3). Улам использовал свое воображение и другими способами: вместе с Эдвардом Теллером он открыл, как инициировать взрыв водородной бомбы.
Рис. 10.3. Спираль Улама. Если записать все натуральные числа по спирали, как показано на вставке, и пометить простые числа, то они проявят тенденцию располагаться на диагональных прямых, как можно видеть, рассматривая черную зону с простыми числами, изображенными, подобно звездам, белыми точками. Мы нарисовали некоторые из диагоналей, чтобы показать их положение; вы могли бы различить и другие.
|
Хотя простые числа являются фундаментальными атомами умножения (так же, как 1 тривиально является фундаментальным атомом сложения), они, может быть, играют фундаментальную роль и в сложении тоже. В 1742 г. Кристиан Гольдбах (1690-1764), однажды оказавшийся учителем царя Петра II, в письме к прославленному математику Леонарду Эйлеру (1707-83) предположил, что каждое четное натуральное число, большее 2, является суммой двух простых чисел. Так, мы имеем 2 + 2 = 4, 3 + 3 = 6, 3 + 5 = 8, …, 47 + 53 = 100, …. Гипотеза Гольдбаха до сих пор не доказана, несмотря на приложение огромных усилий. Трудность, по-видимому, связана с тем фактом, что простые числа, произошедшие из концепции умножения, помещаются здесь в контекст сложения. Однако эта гипотеза может быть примером того, что постепенно выдвигается в центр сцены: она, возможно, не может быть доказана и поэтому, в некотором смысле, эта гипотеза может быть ни истинной, ни ложной. Гольдбах предположил также, что каждое нечетное натуральное число является суммой трех простых чисел. Это предположение частично доказал — доказательство справедливо лишь для больших чисел — в 1937 г. русский математик Иван Матвеевич Виноградов (1891-1983).
Деление одного натурального числа на другое также вводит новый класс чисел, называемых
рациональными числами (от «рацио»; заслуживающее доверия качество таких чисел отражено в нашем привычно используемом термине «рациональный», обозначающем разумность, основанность на разуме); примеры между 0 и 1 включают 1/2 = 0,500 000 000… и 3/7 = 0,428 571 428 57…. Заметим, что десятичные формы рациональных чисел содержат либо бесконечно повторяющийся 0, либо бесконечно повторяющуюся конечную последовательность чисел.
Если вы начнете думать как математик, который идет дальше непосредственно воспринимаемого, ищет обобщений и исследует, куда они ведут, то вы почувствуете зуд от шевелящегося в вас вопроса: существуют ли числа, не содержащие повторяющихся последовательностей и поэтому не выражаемые в виде отношения натуральных чисел? Существование таких
иррациональных чисел было впервые обнаружено пифагорейцами, чья целостная философия жизни в Кротоне (сегодня Кротон, находящийся в каблуке Италии, носит название Кротоне), основанная на гармонии рациональных чисел, запрете мочиться в сторону Солнца или чистить ногти во время жертвоприношения и на поддержании социального мира путем исключения из пищи бобов (практиковавшегося самим Пифагором, чему он обучился у египетских жрецов, среди которых однажды жил)
[49], была ниспровергнута, когда обнаружилось, что квадратный корень из 2, √2, = 1,414 213 5… является иррациональным и не может быть получен с помощью деления одного натурального числа на другое. С тех пор многие другие числа были идентифицированы как иррациональные, среди них
π = 3,141 59… (отношение окружности к диаметру круга,
π введено в качестве символа Эйлером в 1737 г., а иррациональность была установлена в 1767 г.)
[50],
π2 (иррациональность установлена в 1794 г.) и
e = 2,718 28… (основание натурального логарифма). Иррациональность доказать трудно: например, хотя известно, что
еπ иррационально, все еще неизвестно, обладает ли этим свойством
πe.
Рациональные и иррациональные числа, как положительные, так и отрицательные, включая ноль, называются
действительными числами. Чтобы вообразить действительные числа, мы можем представить себе, что каждое число соответствует точке прямой, где самые большие числа находятся справа. Действительные числа, подобно точкам на прямой, простираются от минус бесконечности слева до плюс бесконечности справа и включают все возможные числа — целые, рациональные и иррациональные. Это соответствие действительных чисел с точками прямой явилась решающим шагом в осознании того, что геометрия — свойства различных линий, а значит, наборов точек, а значит, наборов действительных чисел — может рассматриваться, как ветвь арифметики. Мы не пойдем по этому пути в настоящей главе, но вам следует иметь в виду, что, хотя мы и будем сосредотачиваться на идеях, которые являются явно арифметическими, в скрытом виде они включают и другие области математики, такие как геометрия (рис. 10.4).
Рис. 10.4. У греков было абстрактное представление о пространстве, и поэтому они преуспели в геометрии. Здесь мы видим, как параболы, гиперболы и эллипсы (включая частный случай круга) можно рассматривать как наборы чисел, получаемые посредством сечений конуса в разных направлениях. Теперь мы знаем, благодаря пионерской работе Декарта, как связать эти формы с алгебраическими уравнениями, и поэтому можем видеть связи между геометрией пространства и арифметическими свойствами определенных наборов чисел.
|
На самом деле, арифметика даже более богата. В соответствии с чрезвычайно важной, но обманчиво краткой теоремой, которую доказал в 1915 г. немецкий математик Леопольд Лёвенгейм (1878-1957) и усовершенствовал в 1920 г. норвежец Альберт Тораф Сколем (1887-1963), система правил, подобных правилам арифметики, действует в любой области знания, которая может быть формализована в терминах набора аксиом. Если бы в школе вам говорили, что, согласно
теореме Лёвенгейма-Сколема, вы, на самом деле, моделируете процесс вывода заключений из квантовой механики, теории естественного отбора и юриспруденции (постольку, поскольку эти области знания могут быть выражены в терминах аксиом), это могло бы смягчить утомление от узнавания, как извлекать квадратный корень и проделывать длинные упражнения на деление. То же самое верно относительно остальной части этой главы: хотя многое в ней будет читаться, как относящееся к арифметике, имейте в виду, что это
в действительности относится к любой систематизированной области человеческого знания. Если уж это не захватывает дух, то я просто не знаю, чем вас пронять.
Некоторые иррациональные числа, включая
π, но не √2, являются трансцендентными, в том смысле, что они «трансцендируют», переступают обычные алгебраические уравнения. Это просто означает, что они не являются решениями простых алгебраических уравнений, подобных
3x2 − 5x + 7 = 0. Так,
x = √2 есть решение уравнения
х2 − 2 = 0, поэтому (как решение такого уравнения), это число алгебраическое, а не трансцендентное. Однако не существует уравнения такого вида, решением которого было бы
x =
π или
x =
e, поэтому
π и
e не только иррациональные, но и трансцендентные числа. В 1934 г. русский математик Александр Гельфонд (1906-68) доказал, что
ab является трансцендентным, если
a алгебраическое (отличное от 0 и 1) число, a
b — алгебраическое и иррациональное (как √2); так, 2
√2, например, трансцендентно, поскольку 2 — алгебраическое, а иррациональное число √2 — тоже алгебраическое. Поэтому мы сразу знаем, что не существует алгебраического уравнения, решением которого было бы 2
√2. Между прочим, название «алгебра», которое только что появилось, произошло от
Al-jabr w'al muqâbala (Восстановление и упрощение), названия книги Мухаммеда ибн Муса аль-Хорезми, написанной в 830 г.
Al-jabr, «возвращение», здесь относится к решению уравнений, но очаровательно, что этот термин означает также и «костоправ». Аль-Хорезми отличился дважды: его имя тоже является источником термина «алгоритм», обозначающего серию процедур для решения уравнений.
Мы видели, что решения различных уравнений порождают классы чисел, известные под общим названием «алгебраические числа». Решения уравнений, подобных
2x = 1, дают нам рациональные числа (в данном случае
x = 1/2), в то время как уравнения, подобные
x2 = 2, дают нам иррациональные числа (в данном случае
x = √2); числа, не являющиеся решениями уравнений, подобных этим, являются трансцендентными числами (как
x = 2
√2). Натуральные числа можно представить как решения уравнений, подобных
x − 2 = 1 (с решением
x = 3), а отрицательные числа как решения уравнений, подобных
x + 2 = 1 (с решением
x =
−1). Но существует простое уравнение, выпадающее из этого списка: каково решение уравнения
x2 + 1 = 0? Ни одно из чисел введенных ранее не является его решением, поскольку квадрат любого из них положителен и, будучи прибавлен к 1, не может дать нуля. В значительной мере потому, что математики не хотели признавать, что некоторые уравнения не имеют решения, они ввели понятие
мнимого числа i, которое является решением уравнения
x2 + 1 = 0; другими словами,
x = √(
−1). Поскольку они — на самом деле, Декарт — считали, что чисел, подобных
i и
i, умноженному на любое число, в действительности не существует, они и назвали их «мнимыми».
Вскоре стало ясно, что некоторые уравнения, такие как
x2 − x + 1 = 0, имеют решения, представляющие собой комбинации действительных и мнимых чисел, в данном случае
x = ½ + (½√3)
i и
x = ½
− (½√3)
i. Эти комбинации названы
комплексными числами; первый член ½ в этом примере является обычным «действительным» числом, а второй член ±(½√3)
i является мнимым. Были созданы специальные правила для проведения вычислений с этими двухкомпонентными действительными числами, но они явились естественным расширением правил, которые мы используем для действительных чисел, и не вызывают особых трудностей.
Действительные числа могут быть, как мы видели, упорядочены в прямую линию. Комплексные числа становятся немного менее таинственными, как только мы понимаем, что каждое из них можно изобразить точкой на плоскости, на которой действительная компонента числа равна расстоянию от начала координат по горизонтальной оси, а мнимая компонента равна расстоянию от начала координат по вертикальной оси (рис. 10.5). Другими словами, комплексные числа на самом деле являются парами чисел: комплексное число 1 + 2
i, например, является просто двухкомпонентным числом (1, 2), которое мы можем представить точкой с координатами 1 см по горизонтальной оси и 2 см по вертикальной оси. Введем другой способ, посредством которого мы можем представить себе комплексное число в виде костяшки домино, с действительной частью числа на левой половине ее прямоугольника и с мнимой частью на правой половине. В будущем, если вы вынете костяшку домино 4 + 3, представляйте себе ее в виде комплексного числа 4 + 3
i. Если вы чувствуете себя дискомфортно среди образов такого рода, не беспокойтесь: комплексные числа, если не считать мимолетных упоминаний, больше не появятся в этой главе.
Рис. 10.5. Комплексное число является двухкомпонентным числом и как таковое может быть представлено точкой на плоскости. Например, комплексное число 2 − 1i обозначается точкой с координатами 2 единицы по горизонтальной оси и 1 единица вниз по вертикальной оси. Операции с комплексными числами есть просто операции с двухкомпонентными объектами.
|
В этом разделе я обращусь к двум явно наивным вопросам: сколько существует чисел, и что они такое, в конце концов. Можно подозревать, что ответы будут сложнее вопросов, что в итоге, вероятно, и составляет смысл хорошо поставленного вопроса.
На первый взгляд существует бесконечное число натуральных чисел, ибо в принципе мы можем продолжать счет вечно: одна овца, две овцы, …. Мы говорим, что «мощность» натуральных чисел бесконечна. Изобретательный способ демонстрации мощности приписывается немецкому математику Давиду Гильберту, который появится позже в более серьезном контексте, и называется
отель Гильберта. «Отель Гильберта» состоит из бесконечного числа комнат, и однажды ночью все комнаты оказываются занятыми. Прибывает путешественник, не заказавший комнату предварительно. «Нет проблем!» — кричит Гильберт (администратор): он уговаривает всех постояльцев переехать в соседнюю комнату, освобождая таким образом первую комнату и получая возможность устроить в ней вновь прибывшего. На следующую ночь подъезжает бесконечное число путешественников, не заказавших комнату предварительно. «Нет проблем!» — снова кричит обладающий неограниченными ресурсами Гильберт. Он уговаривает
всех постояльцев упаковаться и переехать в комнату с номером вдвое большим, чем номер занимаемой ими комнаты, освобождая комнаты с нечетными номерами и получая возможность устроить всех вновь прибывших.
Пока, возможно, все хорошо. Но как насчет рациональных чисел, чисел, получаемых делением одного натурального числа на другое: сколько их существует? «Очевидным» ответом является то, что рациональных чисел больше, чем натуральных, потому что их ужасно много между 0 и 1 (например, 1/4, 1/2, 53/57 и многие другие), столь же много между 1 и 2 (например, 3/2, 5/3, 79/47 и многие другие) и так далее. Забавно, что правильным ответом, однако, будет такой: количество рациональных чисел таково же, как и количество натуральных чисел. Их число бесконечно, столь же бесконечно, как и число натуральных чисел.
Чтобы убедиться в том, что это так, взгляните на рис. 10.6, где я нарисовал таблицу всех рациональных чисел (но показал только малую часть из них). Поверху вправо идут натуральные числа, указывающие числитель дроби, которую мы намереваемся построить, а слева вниз идут натуральные числа, указывающие ее знаменатель. Внутренняя часть таблицы содержит все возможные дроби, получаемые делением одного натурального числа на другое. Здесь будет много повторений, таких как 3/6 и 4/8 оба равны 1/2, но это не имеет значения. Теперь мы можем провести линию, которая пробегает от первой цифры таблицы через все остальные, как показано на рис. 10.6. Затем, продвигаясь вдоль этой линии, будем вести счет 1, 2, … каждой встречающейся дроби. Таким способом все дроби — все рациональные числа — оказываются поставленными во взаимно однозначное соответствие с натуральными числами. Мы никогда не выйдем за пределы натуральных чисел, поэтому количество рациональных чисел таково же, как и количество натуральных чисел, несмотря на то, что они расположены плотнее, чем натуральные числа. Существует бесконечное число рациональных чисел между 0 и 1 и между 1 и 2, но их бесконечное число между 1 и 2 такое же! Короче говоря, мы всегда можем пересчитать рациональные числа — мы говорим, что они
счетны — и получить ответ «бесконечность» безотносительно к интервалу чисел, на котором производится счет. Возможно, вы начинаете понимать, что бесконечность является расплывающимся и ускользающим понятием.
Рис. 10.6. Рациональные числа можно поставить в соответствие с натуральными числами, поэтому они являются счетными. В верхнем ряду находятся натуральные числа, указывающие числитель дроби p/q, а слева вниз идут натуральные числа, указывающие ее знаменатель. Продвигаясь по извилистой диагональной линии, мы можем пересчитать рациональные числа (включая их многочисленные повторения).
|
Алгебраические числа — числа, являющиеся решениями алгебраических уравнений — тоже являются счетными. Вы можете ухватить идею доказательства этого утверждения, заметив, что каждое алгебраическое уравнение состоит из степеней
x (выражений, подобных
x3), умноженных на целое число (как в
4x3 + 2x − 1 = 0). Поэтому существует взаимно однозначное соответствие между решениями уравнений — алгебраическими числами — и целыми числами, определяющими уравнения. Мы можем заключить, что алгебраические числа являются счетными и, хотя их число бесконечно, мощность их такая же, как у натуральных чисел.
А сколько же иррациональных чисел, чисел, которые не могут быть выражены как отношения натуральных чисел? Возможно, вы думаете, что их тоже бесконечное число. Вы, вероятно, правы. Но то, чего вы, вероятно, не знаете (если вы, конечно, не знали ответ заранее), это то, что иррациональные числа более бесконечны, чем натуральные. То есть иррациональные числа имеют большую мощность, чем натуральные числа: их количество более бесконечно. Красивую аргументацию, впервые выявившую эту странную черту, предложил космополит от рождения Георг Фердинанд Людвиг Филлип Кантор (1845-1918), рожденный от датчанина и русской в Санкт-Петербурге, но проживший большую часть жизни в Германии. Его жизнь была полна разочарований, главным образом потому, что он работал на переднем крае современной ему математики и внес в поле рассмотрения бесконечность. Отчасти в результате стресса, создаваемого неприятием его работы со стороны консервативной части математического истеблишмента, в частности, влиятельного Леопольда Кронекера (1823-91), который был предубежден против всех разновидностей чисел, кроме рациональных, Кантор начал страдать серьезным умственным расстройством, все более обращаясь к религии, ибо он считал, что бесконечные множества объектов, которые он рассматривает, существуют как реализованные сущности разума Бога, и что он, Кантор, есть сосуд, избранный для того, чтобы явить их, некто вроде математического Иоанна Крестителя. Между приступами своей навязчивой идеи о том, что автором Шекспира был Бэкон, Кантор проводил все более длительные периоды в психиатрических клиниках, исследуя пограничные области религии, такие как масонство, теософия и учение розенкрейцеров, в точности так же, как он исследовал пограничные области математики, но с меньшим результатом. Определенно рискуют стать безумными те, кто всматривается в бездну бесконечности, что, возможно, начнете понимать и вы по мере развертывания этой главы.
В 1874 г. Кантор обнаружил простой аргумент, показывающий, что иррациональные числа более многочисленны, чем рациональные. Мы будем использовать этот аргумент и его видоизменения в других контекстах, поэтому стоит на нем задержаться. Начнем выписывать список случайно выбранных чисел, лежащих между 0 и 1, и последовательно их пронумеровывать (в левой колонке):
1 |
0,198 402 957 820… |
2 |
0,438 291 057 381… |
3 |
0,684 930 175 839… |
4 |
0,782 948 261 859… |
5 |
0,500 000 000 000… |
6 |
0,483 913 562 785… |
… |
|
Теперь покажем, что каким бы длинным ни был список, включая бесконечную длину, существуют числа, которых в нем нет. Чтобы проделать это, построим новое число, выбирая первую цифру после десятичной точки в первом числе списка, вторую во втором числе и так далее и записывая в новом числе на соответствующем месте
другую цифру, замена жирных цифр, например, даст нам новое число 0,134 903…. Этого числа определенно нет в списке, поскольку оно отличается от первого числа, оно отличается от второго числа и так далее. Отсюда следует, что количество действительных чисел (рациональные вместе с иррациональными) больше, чем количество натуральных чисел, потому что, как бы ни был длинен список, мы всегда можем построить число, которого в нем нет. Мы говорим, что действительные числа
несчетны.
Давайте посмотрим на это заключение немного более пристально. Мы только что видели, что
действительные числа (натуральные числа плюс рациональные числа и иррациональные числа) являются несчетными. Однако мы видели, что натуральные числа, рациональные числа и алгебраические числа все счетны. Мы можем сделать вывод, что
числа, которые делают действительные числа несчетными, все являются трансцендентными (такими, как
π и
e).
Сделаем паузу, чтобы осознать значение этого необычного вывода. Он означает, что огромное большинство чисел — на самом деле, бесконечно преобладающее большинство — являются трансцендентными. Это весьма удивительно, особенно потому, что трансцендентные числа гораздо менее нам знакомы, чем «обычные» числа, и вы даже могли никогда о них раньше не слышать. Тот факт, что трансцендентные числа в преобладающей степени более многочисленны, чем другие виды чисел, явился основанием для моего замечания в начале главы, что удивительным является то, что мы вообще можем считать: натуральные числа крайне редко распределены среди действительных чисел, и каждое из них окружено бесконечностью трансцендентных чисел. Эдвард Темпл Белл выразил это графически, когда написал
Алгебраические числа [включающие натуральные числа] разбросаны по плоскости как звезды по черному небу; плотная чернота является небом трансцендентности.
Кантор обозначил мощность — полное количество — натуральных чисел буквой древнееврейского алфавита
N0 (алеф-ноль), первым из ряда
трансфинитных чисел N0,
N1,
N2, … расположенных в порядке возрастания. Мы можем представлять себе
N0 как наименьшую версию бесконечности,
N1 как следующую, большую версию, и так далее. Вопрос, с которым столкнулся Кантор, заключается в том, является ли мощность действительных чисел, которая, как мы видели, больше, чем мощность натуральных чисел, равной
N1, или она равна более высокому трансфинитному числу. Знаменитая
континуум-гипотеза состоит в том, что мощность действительных чисел — число точек на прямой — равна
N1 первому после
N0 количественному числу, а не
N5, например, или какому-нибудь другому трансфинитному числу. Как рассказывают, Кантор почти сошел с ума от своих непрерывных, но разочаровывающих попыток доказать континуум-гипотезу. Доживи он до 1963 г., он понял бы причину своего разочарования или, по крайней мере, ему бы ее продемонстрировали, так как в этом году американский логик Пауль Коэн (р. 1934) показал, что эта задача неразрешима: невозможно доказать истинность или ложность континуум-гипотезы, и мощность действительных чисел может быть любой из величин
N1,
N2, …, а возможно, и всеми ими.
Мы споткнулись об еще одну подозрительную и нервирующую черту математики: из нее выходит пар, когда она имеет дело с бесконечностью, так же как, возможно, в ее котлах нет пара при столкновении с предположением Гольдбаха (о возможности выразить любое четное число суммой двух простых чисел). И у нас в голове начинает свербить вопрос: а не трещит ли математика по швам от всего этого, не теряет ли она всю мощь своего авторитета, если на нее посильнее нажать? Существуют ли еще и другие вопросы, подобные континуум-гипотезе, в ответ на которые она лишь оглушенно молчит? И так же, как, по утверждению ультрафинитистов, натуральные числа выдыхаются по пути в бесконечность, не выдыхается ли и сама математика в некоторых областях своих доводов, и не имеет ли она слепых пятен в других областях?
Прежде чем перейти к суждению о том, не являются ли белые одежды математики на самом деле поношенными и расползающимися, стоит сделать еще несколько замечаний об умозаключениях Кантора, пусть даже они могут подтолкнуть нас совсем близко к краю безумия. Во-первых, следствием несчетности действительных чисел является то, что количество точек на отрезке линии любой длины невозможно сосчитать. Однако мы можем быть уверены, что, какова бы ни была длина отрезка линии, она состоит из одного и того же числа точек, каково бы ни было это число. Таким образом, число точек на отрезке линии длиной в миллиметр таково же, как и число точек на отрезке линии, простирающемся отсюда до следующей галактики. А как насчет числа точек на плоскости? С помощью изящных аргументов Кантор смог показать, что каждая точка плоской области может быть поставлена во взаимно однозначное соответствие с каждой точкой отрезка линии, безотносительно к площади области и длины отрезка. Поэтому число точек в плоской области любой площади — на почтовой марке или в Австралии — такое же, как и число точек на отрезке линии любой длины — в нанометр или километр, — и оба числа равны числу действительных чисел. То же самое верно для объема любой размерности: в кубе столько же точек, сколько в десятимерном гиперкубе любого размера и в отрезке линии любой длины. Поэтому, как ни удивительно, на сфере размером с Землю столь же много точек, сколь на отрезке линии длиной в 1 см. Возможно, вы начинаете понимать, почему Кронекера так выводили из равновесия перспективы математики, вступающей в ту область, которую Гильберт назвал «раем Кантора» и теперь, если только мы не примем специальных мер, бесконечность становится предательской трясиной, засасывающей разум.
Мы знаем теперь, что их существует много, мы узнаем их, когда встречаем, но что они такое? Что есть числа? У греков был ограниченный взгляд на числа, поэтому, возможно, геометрия давалась им лучше, чем арифметика. Их символические обозначения не работали: у них были прекрасные символические обозначения для элементарной геометрии — прямая линия и круг, нарисованные на плоскости, — но их понятия о цифрах были неуклюжими. Конечно, они не считали 0 и 1 числами, так как содержанием понятия «число» у них была скорее «многочисленность»: чем многочисленнее, тем и число больше. Как отсутствие вещи, так и одна вещь, не обладают многочисленностью, поэтому они не есть числа.
Современное понятие числа появилось, когда в конце девятнадцатого века первоначально Кантор, а затем, во всей полноте строгости, Фреге и Пеано создали
теорию множеств. Итальянец Джузеппе Пеано (1858-1932) был доктором Касабоном математики, так как, подобно доктору Касабону, предпринявшему попытку написать историю всех религий мира, Пеано потратил свои зрелые годы, с 1892 по 1908 гг., на составление своего
Formulario mathematico, собрания всех известных теорем из всех областей математики. Очаровательно непрактичный Пеано полагал, что
Formulario станет неоценимым благодеянием для лекторов, которым достаточно будет просто провозгласить на лекции номер теоремы, вместо того чтобы обременять себя ее утомительным изложением. Чтобы поощрить международное использование своего труда, Пеано опубликовал его на «Latino sine flexione», изобретенном им якобы интернациональном языке, основанном на латыни и освобожденном от скучной грамматики, но со словарем, в который входили слова из латыни, немецкого, английского и французского языков. Пеано, имевший, по всей видимости, недостаточную способность суждения о принятых в повседневной жизни хороших манерах, хотя в остальном человек мягкий и обходительный, обладал искусством терять друзей с помощью настойчивых упражнений в одном из наиболее впечатляющих своих талантов, способности быть неумолимо логичным. Он использовал свой талант, чтобы подсекать потенциальных друзей, если их аргументы не были вполне строгими; но он воспользовался им и для доброго дела, сформулировав основания математической логики. Даже молодой Бертран Рассел был впечатлен точностью Пеано и мощью сопровождавшей ее аргументации, когда они встретились в 1900 г., и, когда Рассел приступил к своему собственному формулированию оснований математики, он воспользовался видоизмененными обозначениями Пеано.
Пеано, по некоторым непостижимым, но, возможно, обаятельно романтическим причинам, опубликовал свои аксиомы на латыни. Он определил арифметику следующими постулатами:
1. 0 есть число.
2. Элемент, непосредственно следующий за числом, есть также число.
3. 0 не является элементом, непосредственно следующим за каким-либо числом.
4. Никакие два числа не имеют одного и того же следующего за ними элемента.
5. Любое свойство, которым обладают 0 и каждый элемент, непосредственно следующий за числом, есть также свойство, которым обладают все числа.
Последняя аксиома есть
принцип математической индукции. Если мы обозначим операцию «непосредственно следующий за» символом
s, то получаем возможность определить 1 как
s0 (элемент, непосредственно следующий за 0), 2 как
ss0 (элемент, непосредственно следующий за элементом, непосредственно следующим за 0), 3 как
sss0 и так далее. У этого подхода, однако, существует та проблема, что Пеано оставил без определения некоторых из своих терминов, такие, как «непосредственно следующий за» и, конечно, «число», так что мы все еще не знаем,
чем являются числа.
Основополагающий вклад в решение этой проблемы внес Фридрих Людвиг Готтлоб Фреге (1848-1925). Этот вклад казался отправным пунктом для того, чтобы математика могла занять подобающее ей высшее место в иерархии человеческой мысли, а на деле оказался причиной ее падения. Фреге считают основателем математической логики, так как ему удалось создать превосходную логическую схему, которая должна была утвердить математику в качестве краткого конспекта сушеной человеческой мысли. Для достижения этого ему было необходимо понятие числа, и, чтобы создать его, он построил в своем труде
Grundlagen der Arithmetik (Основания арифметики, 1884) концепцию
множества. Множество — это просто собрание различных объектов, например, {Том, Дик, Гарри}. Множества были введены в математику Кантором, а в течение последующих десятилетий теорию множеств усовершенствовали Эрнст Цермело (1871-1953) и Адольф Френкель (1891-1965), которые сформулировали точные утверждения о свойствах множеств, о том, как их строить (то, чего Кантору объяснить не удалось) и как с ними обращаться. Поэтому современная общепринятая теория множеств известна как
теория Цермело-Френкеля.
Фреге предложил считать числа названиями множеств определенного вида. Чтобы сделать свое определение точным, он ввел понятие
расширения свойства, как множества, состоящего из всех объектов, этим свойством обладающих. О названии «расширение» лучше всего думать как о слове, произошедшем от словосочетания «расширенный набор». Так, расширением свойства «иметь такой же размер, как множество {Том, Дик, Гарри}» является множество, состоящее из
всех множеств, которые имеют тот же размер. Понятие «иметь такой же размер» в теории множеств вполне определенно: оно означает, что элементы множеств одного размера могут быть поставлены во взаимно однозначное соответствие. Например, множество {Том, Дик, Гарри} имеет такой же размер как {камень, ножницы, бумага}, поскольку Тома можно привести в соответствие с камнем, Дика с ножницами, а Гарри с бумагой (рис. 10.7). Может показаться, что теория множеств чересчур уж тщательно заботится об определениях: но эта забота совершенно необходима, когда речь идет об основаниях математики. Расширением свойства «иметь такой же размер, как множество {Том, Дик, Гарри}» будет, таким образом, множество, состоящее из множеств {Том, Дик, Гарри}, {камень, ножницы, бумага} и так далее. А теперь мы с грохотом плюхаемся на землю: мы называем это расширение, это множество, числом 3.
Рис. 10.7. Множество объектов имеет тот же самый размер, что и другое множество, если элементы этих множеств могут быть поставлены во взаимно однозначное соответствие. Эти два множества имеют один и тот же размер: если убрать самолетик, они будут иметь разные размеры.
|
Продолжая, Фреге определил натуральные числа как следующие расширения:
0 есть название расширения свойства «иметь такой же размер, как множество, состоящее из элементов, которые не тождественны самим себе»
(конечно, того, что не тождественно самому себе, не существует).
1 есть название расширения свойства «иметь такой же размер, как множество 0».
2 есть название расширения свойства «иметь такой же размер, как множество, состоящее из множеств 0 и 1»,
и так далее. Решающим моментом этого определения чисел как названий множеств, последовательно определяемых в терминах меньших множеств, является то, что в нем используются термины, взятые из математической логики, а именно «свойство», «равенство» и «отрицание». Это привело Фреге к точке зрения, что математика есть не более чем логика.
Логикой это могло быть, но удовлетворительным не могло. В 1902 г. незадолго до того, как Фреге был готов отправить издателю второй том своего огромного труда
Grundgesetze der Arithmetik (Фундаментальные законы арифметики), в котором он возводил все здание математики, опираясь на это определение числа, он получил от Бертрана Рассела знаменитое письмо, указывающее на существование одного несоответствия. Собственные слова Фреге живо передают охвативший его ужас, когда он распечатал письмо Рассела:
Вряд ли ученый[51] может столкнуться с чем-нибудь более нежелательным, чем необходимость сдаться как раз тогда, когда работа закончена. Именно в такое состояние повергло меня письмо мистера Бертрана Рассела, когда работа вот-вот должна была отправиться в печать.
Бертран Рассел (1872-1970) указал Фреге на проблему расширения свойства «не принадлежать самому себе». Предположим, мы рассматриваем множество, состоящее из множеств, которые не являются элементами самих себя. Например, множество, состоящее из «абстрактных идей», является элементом самого себя, поскольку такое множество само является абстрактной идеей, в то время как множество, состоящее из «фруктов», не является элементом самого себя, поскольку само это множество не есть фрукт. Рассел спросил, принадлежит ли самому себе множество всех множеств, не принадлежащих самим себе? Если оно принадлежит самому себе, то оно относится к множествам, не принадлежащим самим себе. Если оно не принадлежит самому себе, то оно относится к множествам, принадлежащим самим себе. Короче говоря, если оно да, то оно нет, а если оно нет, то оно да.
Антиномию (противоречие, парадокс)
Рассела многократно выражали в более повседневных разговорных терминах, таких как «брадобрей в этом городке бреет всех мужчин, которые не бреются сами: бреет ли брадобрей себя?».
Антиномия Рассела подорвала программу Фреге, а вместе с ней и основания математики. Причина коррозионного действия противоречия состоит в том, что в логике справедлива теорема: если система аксиом теории приводит к противоречию, то любые предложения, которые можно сформулировать в теории, являются ее доказуемыми теоремами. Поэтому, если определения Фреге приводят к противоречию, то из них можно вывести какую угодно теорему, включая «1 = 2» и «√2 есть рациональное число». Следовательно, в качестве оснований арифметики его аксиомы хуже, чем ничего.
Рассел так же глубоко, как и Фреге, был озабочен основаниями математики и в равной мере проявлял интерес к попыткам продемонстрировать, что математика является не более чем ветвью логики. Такова точка зрения
логицистической школы философии математики. В 1903 г. Рассел публикует свои
The principles of mathematics, а его бывший экзаменатор, а теперь коллега по Кембриджу, Альфред Норт Уайтхед (1861-1947), готовит второе издание
A treatise on universal algebra. Оба они пришли к соглашению о сотрудничестве в более амбициозном проекте, заключающемся в доказательстве того, что математика в целом есть подмножество логики. Работа, на подготовку которой они потратили десятилетие, в конце концов появилась в виде трех томов
Principia mathematica в 1910, 1912 и 1913 гг. Запланированный четвертый том о геометрии так никогда и не появился. В
Principia использовалась тщательно разработанная система обозначений, дающая больше возможностей, чем системы Пеано и Фреге; некоторое представление о ее изощренности можно получить из рис. 10.8, представляющего собой проделанное Расселом и Уайтхедом доказательство того, что 1 + 1 = 2.
и много позже
Рис. 10.8. Факсимиле доказательства того, что 1 + 1 = 2, из Principia mathematica.
|
Расселу и Уайтхеду было необходимо обойти трясину противоречий, которая засосала Фреге. Чтобы достичь этого, Рассел ввел свою теорию типов, в которой элементам множеств присваивается «тип», и каждое множество может содержать элементы только низшего типа. Так, единичные объекты имеют тип 0, утверждения о множествах этих единичных объектов имеют тип 1, и так далее. Поскольку множество может содержать лишь множества низшего типа, оно никогда не может стать элементом самого себя, так что антиномии Рассела удастся избежать. Однако теория типов все еще недостаточно сильна для того, чтобы устранить некоторые парадоксы, такие как «парадокс Берри», предложение из десяти слов: «наименьшее из целых чисел, определяемых не менее чем одиннадцатью словами». Целое число, удовлетворяющее этому требованию, на самом деле определено предложением из десяти слов, поэтому данное предложение противоречиво. Чтобы избежать опасностей также и этого болота, Рассел был вынужден проложить гать из нового варианта теории типов, который он назвал
разветвленной теорией типов. В разветвленной теории обозначения присваивались не только типам рассматриваемых объектов, но также и способам их определения.
Principia mathematica основаны на разветвленной теории типов.
Возможно, создается впечатление, что разветвленная теория типов является лоскутным одеялом, сшитым из отдельных уверток. На самом деле, все обстоит гораздо хуже, поскольку в ней оказалось невозможным доказать, что каждое натуральное число имеет следующее за ним или что количество натуральных чисел бесконечно. Чтобы преодолеть эти недостатки, к лоскутному одеялу пришлось пришить
аксиому бесконечности, которая просто декларировала существование бесконечности. Но худшее (в смысле увеличения числа лоскутков) было впереди: для корректного определения числа пришлось добавить лоскут
аксиомы редуцируемости, связанной с поведением предложений различного порядка. Так или иначе, но логицистическая повестка дня раскручивалась, и, казалось, становилось ясно, что математика не является просто ответвлением логики.
Что также становилось ясным, так это существование проблем с теорией множеств, которую хотели представить как основание математики. Может быть, неприятности теории множеств можно проследить до подлинной проблемы, заключающейся в самом понятии множества, которое выглядит выхолощенным? Может быть, понятие множества слишком широко для математиков? В начале двадцатого века, приблизительно в то же время, когда Рассел и Фреге сражались со своими проблемами, эта точка зрения получила определенную поддержку в форме
аксиомы выбора. Эта аксиома является логическим двойником пятого постулата геометрии Евклида (о параллельных прямых, глава 9) и привлекла к себе огромное внимание. Ее простейшая форма выглядит кроткой как овечка: если у вас есть набор множеств, то вы можете составить новое множество, выбирая по одному элементу из каждого множества и добавляя их в свою тележку для покупок. Все мы собираем таким способом элементы множеств в супермаркете, называя вновь сконструированное множество своим шопингом. Кто мог бы возразить против такой процедуры собирания множества?
Однако овечка сбрасывает шкуру и оборачивается волком, как только мы начинаем рассматривать бесконечные множества, поскольку, возможно, нет никакого способа точно определить выбор. Для конечного числа множеств мы можем просто составить список всех элементов, которые хотим выбрать — список покупок. Рассмотрим, однако, следующую задачу. У нас есть бесконечное число множеств, одно состоит из действительных чисел, лежащих между 0 и 1, другое между 1 и 2 и так далее. Мы решили образовать новое множество путем случайного выбора по одному элементу в каждом из этих множеств. К сожалению, мы не можем составить список наших выборов, потому что их число бесконечно, и не можем определить их правилом, потому что их выбор должен быть случайным. Таким образом, мы образовали множество, которое не можем точно определить. Рассел привел бытовую иллюстрацию трудности, которую создает аксиома выбора: богатый человек, имеющий бесконечное число пар носков, поручает слуге выбрать по одному носку из каждой пары. Слуге не удается это проделать, так как у него нет способа решить, какой носок в каждой паре он должен выбрать.
Существуют три позиции, которые можно занять по отношению к аксиоме выбора, и каждый математик, сознательно или бессознательно, выбирает одну из них. Одна позиция, которую занимают математические страусы, заключается в том, чтобы игнорировать проблему, которую представляет эта аксиома, и просто продолжать работать как ни в чем не бывало. Это точка зрения всех физиков, большая часть которых вообще не подозревает, что здесь есть какая-то проблема, и только отрешенно пожмет плечами, если привлечь к ней их внимание и объяснить, в чем дело. Затем имеются математические социальные работники, которые осведомлены о проблеме и используют аксиому выбора для логического доказательства лишь как последнюю спасительную соломинку. Они отчаянно пытаются найти альтернативный маршрут среди аксиом, какими бы извилистыми ни становились их аргументы. И, наконец, существуют математические святые, поистине блюдущие обет безбрачия, когда дело доходит до аксиомы выбора, которым на нее противно даже смотреть, рассматривающие любое опирающееся на нее доказательство как ничтожное.
Если математика не является в чистом виде ответвлением логики, что заставляют предполагать все эти неудачи, то какие еще дополнительные составляющие заложены в ней? Чтобы раскопать одну вероятную составляющую, мы должны обратиться к сыну шорника и наиболее трудно понимаемому, но и наиболее влиятельному из философов восемнадцатого века, возможно, на четверть шотландцу, Иммануилу Канту (1724-1804). В своем обсуждении метафизического познания, представляющего собой философское познание, выходящее за пределы опыта, в своей книге
Kritik der reinen Vernunft (Критика чистого разума, 1781), Кант вводит различие между «синтетическими» и «аналитическими» суждениями.
Аналитическое суждение, в котором предикат (свойство) предмета может быть выявлен путем только рассуждения, не приносит нового знания, как, например, высказывание «морковь является овощем». Согласно логическим позитивистам начала двадцатого века, принявшим и уточнившим этот термин, истинность аналитического суждения зависит только от значений составляющих его слов и правил грамматики, управляющих их сочетанием. Однако
синтетическое суждение является таким, в котором предикат не содержится в предмете, например, «эта роза — красная», поскольку не все розы красные; такие утверждения несут новое знание. Далее, эти категории подразделяются на суждения
a priori, для которых оценка их истинности не зависит от свидетельства опыта, и суждения
a posteriori, для которых оценка истинности определяется в опыте.
Кант предположил, что синтетические суждения
a priori, которые выражают новое знание, но являются не связанными с опытом, представляют собой подходящие объекты для философского исследования. Такие суждения включают в себя утверждения о пространстве и времени, которые, с его точки зрения, неоспоримы, и восприятие которых каким-то образом встроено в наши мозги. Для Канта принципы геометрии Евклида и свойства натуральных чисел были синтетическими суждениями
a priori. С точки зрения Канта, теоремы математики представляют собой «евклидизацию» свойств пространства и времени, которая некоторым образом выявляет работу нашей нервной системы (это, разумеется, не тот термин, который он использовал) и наши способы восприятия.
Идею о том, что в натуральных числах присутствует нечто врожденное, являющееся непосредственно очевидным синтетическим априорным свойством мира, датский математик Луитцен Эгбертус Ян Брауэр (1881-1966), один из создателей топологии, в своей докторской диссертации, защищенной в 1907 г. в Амстердамском университете, развил в философию математики, известную как
интуиционизм. Брауэр отмел кантовский взгляд на геометрию как на синтетическую априорную конструкцию, который, на самом деле, уже был превращен в пыль тем, что пятый постулат Евклида, хотя он и согласуется с другими постулатами, можно заменить другими, не создавая противоречия (как мы видели в главе 9). То есть Брауэр признал, что Кант был неправ, предполагая, что евклидова геометрия
необходимо верна, поскольку существуют альтернативные геометрии, которые, как показывает опыт, лучше описывают пространство и время. Однако он не отверг в целом точку зрения Канта на математику как на средство изучения пространства и времени, он отверг только ее пространственную составляющую. Брауэр считал, что математика является выражением нашего осознавания времени, и пропагандировал тот взгляд, что натуральные числа происходят из последовательного просмотра набора объектов и временного разделения наших восприятий каждого из них, которое и представляет собой способ их различения. Брауэр, на самом деле, шел дальше: он был соллипсистом и считал, что все существующее, включая наши сознания, происходит из одного сознающего ума. Однако это точка зрения не является необходимой составляющей интуиционистской повестки дня, и на первый взгляд кажется, что нет необходимости говорить о ней далее (но позднее я еще коснусь с одобрением одного ее варианта).
Интуиционист принимает точку зрения, что натуральные числа имеют особый статус и что мы имеем прямую их интуицию: они не являются объектами, которые можно разработать лучше с помощью дальнейших описаний. Для того чтобы, следуя Брауэру, прийти к понятию натурального числа, мы должны замечать, как наше восприятие проводит различия между объектами, возникающие из упорядоченного во времени их просматривания, с отгибанием пальца всякий раз, как в поле нашего зрения попадает еще один. Из такого взгляда следует, что натуральные числа являются выражением нашей умственной активности. Подобным же образом арифметические операции, такие как сложение, следует считать изображениями умственных процессов, происходящих у нас в голове. Таким образом, чтобы подтвердить, что 2 + 3 = 1 + 4, мы должны выполнить множество операций; мы должны найти результат прибавления 2 к 3, так же как и 1 к 4, а затем должны удостовериться, что эти результаты равны друг другу.
У интуиционизма есть определенные неприятные следствия, которые не становятся немедленно очевидными при кратком описании, но которые необходимо отметить, поскольку они наносят удар в самое сердце классической логики. Это, в частности, случай, когда имеют дело с утверждениями о бесконечных наборах объектов, с которыми нельзя ассоциировать никакую умственную активность, связанную с их восприятием, поскольку у нас нет прямого опыта бесконечности. Например, Аристотель считал одним из столпов логики свой
закон исключенного третьего, согласно которому любое утверждение либо истинно, либо ложно. Этот закон оказывается не выполняющимся в интуиционистской математике, поскольку в ней может существовать утверждение, которое не может быть доказано или является логически неразрешимым. В любом случае, это не та ситуация, в которой утверждение либо истинно, либо ложно, лишь бы это когда-либо могло быть доказано. Одним из следствий такого положения дел является то, что утверждение «неверно, что это предложение ложно» не эквивалентно утверждению «это предложение истинно». В то время как мы могли бы утверждать, что сказать «неверно, что в коробке с бесконечным числом шаров найдется шар не красного цвета» это то же, что сказать «все шары в коробке красные», интуиционист отверг бы такое заключение. Согласно интуиционизму, истинность утверждения «в коробке найдется шар не красного цвета» может быть установлена только перебором всех находящихся в коробке шаров, что невозможно в случае бесконечного набора. Еще одним следствием такого положения является невозможность доказать некоторое утверждение, используя аргумент
reductio ad absurdum, то есть показать, что отрицание этого утверждения ложно или ведет к противоречию. Для интуициониста единственно приемлемым утверждением является такое, доказательство которого может быть явно построено и требует конечного числа шагов.
Давид Гильберт (1862-1943), прекрасный танцор и любитель пофлиртовать, был одним из наиболее влиятельных математиков двадцатого столетия. Он, как и Кант, родился в Кенигсберге, в Восточной Пруссии (по странному совпадению, Гольдбах тоже родился там). Он знаменит, в частности, тем, что сформулировал проблемы математики, которые, по его ощущениям, на грани веков, то есть в начале двадцатого века, являлись самыми выдающимися. С тех пор многие математики пытались разрешить представленные Гильбертом проблемы, сообщение о которых он сделал на Втором Международном конгрессе математиков в Париже в 1900 г. В лекции были представлены десять проблем; пока Гильберт работал над версией для публикации, их число выросло до двадцати трех. Влияние этих проблем — которые правильнее считать комплексом из группы проблем и намеков на проблемы, чем двадцатью тремя точно сформулированными отдельными экзаменационными вопросами — проистекает из того, что они представляли собой ответ на вопрос о том, что считать хорошей проблемой. Так, проблемы, предъявленные Гильбертом, стоили того, чтобы потратить время на их решение: они были трудными, но не выглядели нерешаемыми, а решение их осветило бы более широкий круг вопросов, чем те, которые они содержали.
Некоторые из этих проблем решены; некоторые оказались неразрешимыми; иные все еще подвергаются атакам исследователей. Некоторые из проблем, в том виде, в котором Гильберт их сформулировал, являются настолько грандиозными, что неясно, будет ли когда-нибудь получено их решение, столь же определенное, как для других проблем. Например, одной из грандиозных проблем была аксиоматизация физики, утверждение ее на кратком и надежном основании, как это проделал Евклид для своего варианта геометрии, а он, Гильберт, строго формализовал его в своем авторитетном труде
Grundlagen der Geometric (Основания геометрии, 1899). То, что он здесь имел в виду, можно истолковать, как формулирование «общей теории всего». Однако большая часть этих проблем вполне опеределенна, особенно если их великодушно интерпретировать. Например, они включали доказательство континуум-гипотезы Кантора (которая оказалась недоказуемой) и
гипотезы Римана о том, что некоторая определенная функция комплексного переменного
z обращается в нуль на бесконечном множестве значений
z, каждое из которых имеет действительную часть, равную 1/2 (рис. 10.9).
Рис. 10.9. Известно, что все решения уравнения 1 + 1/2z + 1/3z + 1/4z + … = 0, где z — комплексное число, лежат в окрашенной полосе между 0 и 1. Одна из форм гипотезы Римана утверждает, что все решения этого уравнения на самом деле лежат на центральной линии полосы (как обозначено маленькими кружками), на которой действительная часть равна 1/2 в каждом случае.
|
Последняя проблема может показаться не слишком уместной, но на самом деле она имеет фундаментальную важность для изучения простых чисел; она остается нерешенной и считается одной из важнейших нерешенных проблем математики. Позднее мы встретимся с двумя другими проблемами Гильберта явно. Его второй проблемой, которую атаковал и решил отрицательно Гёдель, было доказательство непротиворечивости аксиом арифметики. Его десятой проблемой, так называемой
Enischeidungsproblem (проблема решения), которую также атаковали и решили отрицательно Алан Тьюринг и Апонз Чёрч, было обнаружение процесса, посредством которого можно было бы определить, решаемо ли уравнение за конечное число шагов или нет.
Гильберт развил также философию математики, которая стала называться
формализмом. Он видел математику как два плотно склеенных листа: один лист состоит из конечных расположений символов, получаемых с помощью применения определенных правил. Эти символы просто образуют определенный рисунок на странице и совершенно лишены смысла. Такие бессмысленные рисунки и есть то, что мы на самом деле понимаем под математикой. Даже аксиомы системы являются просто строчками значков, из которых вытек смысл, интеллектуальными трупами, а новые картинки выводятся из этих строчек посредством применения абстрактных правил. С этой точки зрения математики являются дизайнерами обоев. Единственные надежные доказательства, согласно Гильберту, являются
финитистскими, а том смысле, что они являются
финитными (то есть конечными) наборами символов, поскольку лишь такие наборы можно обозреть и проверить: безопасная математика — это финитная математика. На втором листе находится
метаматематика, которая состоит из комментариев к реальной математике, она содержит комментарии типа «эта строка символов имеет сходство с другой», или
«x нужно интерпретировать как особый знак для объекта», или «особая группа знаков указывает на то, что модель является полной», или «вот доказательство этого предложения». Мы можем представлять себе собственно математику как всевозможные расположения фигур на шахматной доске, а сопровождающую ее метаматематику как комментарии типа «для белых существует двадцать возможных первых ходов» или «в этой позиции следует шах и мат». Согласно формалистам, математика — это абстрактный символизм и порождение моделей: метаматематика наделяет символизм и модели значением для человека, она пропитывает значки «смыслом», она восстанавливает у трупов кровообращение.
Существует еще одна школа мысли о природе математики,
платоновский реализм. Математики, принадлежащие к этой школе, с презрением отвергают точку зрения формалистов, считающих математику занятием, порождающим лишь бессмысленные строчки символов. Они также с презрением отвергают настойчивые утверждения интуиционистов о том, что математика является проекцией ума, что существование не имеет смысла, пока не проведено его доказательство, и что в отсутствии сознания нет никаких чисел и никаких параллельных линий. Подобно формалистам и интуиционистам, они признают недостаточность логицистического утверждения о том, что математика есть не более чем ветвь логики, и соглашаются с ними, что математика больше, чем логика.
Платоники, как называют этот род математиков, считают, что отсутствующая компонента является реальностью. Математики-платоники являются горняками в забое, разрабатывающими залежи предсуществующих закономерностей и пробивающие свои штреки киркой интеллектуальной рефлексии о мире. Они добывают истину, а не вводят ее. Для них числа являются реальными сущностями, а отношения между числами являются утверждениями об существующих объектах. Для них прямые линии, треугольники и сферы реальны как скалы, а арифметические истины (которые, напомним, означают любой вид математической истины, а возможно, даже более того) являются комментариями к некоему роду существования. Таким образом, они отвергают стерильное равнодушие формализма и субъективную запутанность интуиционизма и считают, что они являются такими же учеными, как и все мы. Они извлекают вневременные истины и находясь в яростной оппозиции к установке интуиционистов, считают, что истины существуют даже в том случае, если их доказательство еще не сформулировано.
Я рассмотрю теперь две из важнейших проблем Гильберта, те две, которые наносят удар в самое сердце философии математики и наиболее прямо исследуют ее возможности. Как я уже упоминал, одной из этих проблем является так называемая
Entscheidungsproblem, проблема отыскания систематического способа для определения того, можно ли доказать некоторое утверждение символического языка с помощью аксиом этого языка. Атаку на эту проблему почти одновременно предприняли двое, одним был американский логик Алонзо Чёрч (1903-95), который ввел и разработан то, что он назвал λ-исчислением, а другим — британский математик Алан Мэтисон Тьюринг (1912-54), который ввел «логическую вычислительную машину», известную как
машина Тьюринга. Эти два подхода изначально были различны на поверхностном уровне, но сотрудничество Чёрча и Тьюринга показало, что на самом деле они математически эквивалентны. Существует одна чрезвычайно важная сильная сторона математики, ее способность показывать эквивалентность с виду совершенно несравнимых вещей. Мы сосредоточим внимание на подходе Тьюринга, поскольку он имеет больше сходства со знакомым нам современным миром компьютеров, но не должно пройти незамеченным, что λ-исчисление Чёрча ассоциируется с используемым в них программным обеспечением и является его основой.
Машина Тьюринга является прибором, который претендует на имитацию действий человека, производящего некоторого рода
алгоритмическое вычисление, то есть вычисление, выполняемое с помощью серии последовательных правил, и в котором мы теперь узнаем представление цифрового компьютера. К первой реализации программируемого цифрового электронного компьютера Тьюринга привела, конечно, его работа со взламыванием кодов во время Второй мировой войны на Блетчли-парк, на севере Лондона, а позже в Манчестере. Благодаря успехам во взламывании кодов, на счету Тьюринга оказалось приписываемое ему уменьшение продолжительности войны на месяцы, если не на годы, и, определенно, спасение многих тысяч жизней. К позору для Англии середины двадцатого столетия, Тьюринг, преследуемый законами и нравами общества того времени (он был гомосексуалистом), рано закончил свою жизнь.
Тьюринг искал путь для извлечения сущности того способа, которым человек производит вычисления, а затем исследовал ограничения этого процесса, пытаясь выяснить, возможен ли вопрос, ответ на который, как бы долго ни работал человек, не будет получен? Вариант процедуры, предложенный Тьюрингом, был заключен в капсулу прибора, состоящего из
бесконечно длинной ленты бумаги (в подражание бесконечному источнику бумаги и карандашей, которым может располагать человек-вычислитель при выполнении расчетов, делая записи промежуточных вычислений и затем записывая окончательный ответ) и считывающей и пишущей головки, которую можно запрограммировать так, чтобы она реагировала по определенным правилам на то, что записано в ячейке, проходящей мимо нее в данный момент (рис. 10.10). Эти правила можно было видоизменять и направлять на читающую головку с бумажной ленты.
Рис. 10.10. Версия машины Тьюринга. Машина состоит из бесконечно длинной ленты бумаги, разделенной на ячейки, в которых могут быть записаны символы (обычно, 0 или 1), и механизма, который может считывать эти символы, реагируя на считываемое в соответствии со своим внутренним состоянием в данный момент, меняя символы, если это требуется, и переходя к соседним ячейкам в соответствующем направлении. В этом представлении внутреннее состояние обозначается световым сигналом на одной из сторон считывающей головки. Правая диаграмма показывает возможный отклик: машина находится во внутреннем состоянии, обозначенном световым сигналом, и считывает 1; в результате она заменяет 1 на 0, меняет свое внутреннее состояние и сдвигает ленту на один шаг вправо.
|
Предположим, что ячейки бумажной ленты могут содержать либо 0, либо 1, а головка, в зависимости от своего внутреннего состояния, может считывать ячейку, записывать в ячейку и передвигать ленту на одну ячейку вправо или влево. Конкретная машина Тьюринга будет выполнять серию операций в зависимости от того, что она обнаружит на ленте, и в соответствии со способом реагирования, на который настроена ее головка. Например, если она обнаруживает на ленте 1, когда сама находится в состоянии «1», она может заменить на ленте 1 на 0, поменять свое внутреннее состояние на «2» и сдвинуть ленту на один шаг вправо. В новой ячейке может оказаться 0. Когда головка находится в состоянии «2» и считывает 0, она, возможно, запрограммирована на сдвиг ленты на один шаг влево, а если она считывает 1, то меняет 1 на 0 и сдвигает ленту на один шаг вправо. Если реакции головки искусно запрограммированы, машину можно использовать для выполнения даже самых сложных вычислений. Реальное конструирование такой головки и ее реакций может быть весьма сложной процедурой, а вычисления могут быть очень медленными, но здесь нас интересует лишь принцип вычислений, а не их эффективность.
Каждая из машин Тьюринга представляет собой специальное устройство из ленты и считывающей головки, определенным образом запрограммированной. Давайте предположим, что мы можем пронумеровать все возможные машины Тьюринга, так что у нас есть склад с ящиками, помеченными знаками
t1,
t2, и так далее. Если одна из этих машин принимает определенное число и останавливается, мы обнаружим определенное число на выходе. Например, если машина
t10 принимает число 3, это может означать 42 на выходе и конец вычислений. Чтобы зарегистрировать этот результат, запишем
t10(3) = 42. Однако может существовать комбинация машины и значения числа, для которой вычисления никогда не закончатся, например, если машина
t22 принимает число 17. Чтобы зарегистрировать этот результат, запишем
t22(17) = □. Перед Тьюрингом стояла задача узнать, существует ли способ проверки всех возможных машин и принимаемых ими значений чисел и принятия на основе этой проверки решения, будут ли вычисления когда-либо закончены.
Чтобы выполнить эту программу, предположим, что существует
универсальная машина Тьюринга, которая является такой машиной Тьюринга, которую можно запрограммировать для имитации любой индивидуальной машины Тьюринга. У этой машины входная лента имеет две секции, одна для программы, а другая для данных. Программная часть может состоять из строки чисел, которые инструктируют головку, как реагировать на то, что она обнаруживает на ленте. Например, код 001 может означать:
001: если вы обнаруживаете на ленте 1 и находитесь в состоянии 1, замените 1 на 0, смените ваше внутреннее состояние на состояние 2 и передвиньтесь на один шаг вправо.
Подобным же образом, код 010 может означать:
010: если вы обнаруживаете на ленте 0 и находитесь в состоянии 2, передвиньтесь на один шаг влево; а если вы считываете 1, то замените 1 на 0 и передвиньтесь на один шаг вправо.
Программная часть ленты может выглядеть как …001010…, если эти две инструкции надо выполнить последовательно. Мы будем называть универсальную машину Тьюринга
tu. Заметим, что, в то время как
индивидуальная машина Тьюринга считывает только данные,
универсальная машина сначала считывает программу, чтобы подготовить себя, а затем уж считывает данные. Так, если мы хотим, чтобы она имитировала
t10, мы считываем программу 10, то есть множество инструкций, настраивающих машину на работу в режиме
t10, а затем скармливаем ей данные. Если данные состоят из числа 3, мы будем ожидать от этого совместного процесса ответ 42 и запишем
tu(10,3) = 42, где первое число в скобках является номером машины Тьюринга, которую мы хотели имитировать, а второе число представляет данные.
Предположим теперь, что существует машина Тьюринга, которая может взять программу любой другой машины Тьюринга, например
t23, и любое множество данных, и решить, остановится или нет эта комбинация, чтобы напечатать ответ. Мы назовем эту особую машину Тьюринга
th (h здесь от английского глагола «halt» — останавливаться). Если
th получает остановку для частной комбинации программы и данных, например
t23 и 3, она напечатает 1 и остановится; если она определяет, что комбинация не приводит к остановке, например
t22 и 17,
th напечатает 0 и остановится. Успех Тьюринга выразился в доказательстве того, что
th не включена в список всех возможных машин Тьюринга и поэтому не существует. Чтобы проделать это, он использовал аргументы, очень похожие на «диагональные» аргументы, которыми пользовался Кантор для доказательства того, что иррациональные числа несчетны. Вы можете свободно перейти к следующему подразделу, если хотите пропустить вывод этого результата.
Эти аргументы таковы. Предположим, что мы задаем входные данные 0, 1, 2, … и машины Тьюринга
t0, t1,
t2, … и составляем таблицу, верхним левым фрагментом которой является следующая:
Вход |
0 |
1 |
2 |
3 |
Номер матрицы |
0 |
□ |
□ |
□ |
□ |
1 |
3 |
□ |
4 |
1 |
2 |
1 |
1 |
1 |
1 |
3 |
0 |
1 |
□ |
2 |
Когда вычисления не останавливаются, мы записываем символ □. Таблица содержит все возможные вычислимые числа (числа, которые могут быть вычислены машиной Тьюринга до произвольного числа разрядов), поскольку она содержит в своих последовательных рядах все возможные машины Тьюринга, а в последовательных колонках все возможные входы.
Теперь мы делаем второй шаг. На этот раз мы рассортируем результаты с помощью машины
th, которая настроена так, что выдает 0, если решает, что соответствующие вычисления не остановятся, и не выдает никаких данных, если решает, что вычисления остановятся. Она также делает себе пометку, чтобы запомнить, где она заменила □ на 0, так как не хочет, чтобы машина, программа которой имитируется, была снова втянута в бесконечные вычисления. Например, когда мы загружаем в машину
th число 4, а затем число 2, она, в соответствии с программой
t4 и данными 2, инспектирует ленту, производит некоторого рода вычисления, решает, что вычисление
t4(2) не остановится, если мы будем его выполнять, и поэтому ставит 0 в соответствующую ячейку таблицы и делает себе пометку, что данное вычисление не остановится. В конце этого этапа вычислений верхний левый фрагмент таблицы выглядит так:
Вход |
0 |
1 |
2 |
3 |
Номер матрицы |
0 |
0 |
0 |
0 |
0 |
1 |
|
0 |
|
|
2 |
|
|
|
|
3 |
|
|
0 |
|
Теперь
там, где мы не обнаруживаем 0, мы производим все вычисления, как мы это делали на первом шаге, и получаем следующий фрагмент таблицы:
Вход |
0 |
1 |
2 |
3 |
Номер матрицы |
0 |
0 |
0 |
0 |
0 |
1 |
3 |
0 |
4 |
1 |
2 |
1 |
1 |
1 |
1 |
3 |
0 |
1 |
0 |
2 |
Поскольку исходная таблица содержит все возможные вычислимые числа, эта таблица тоже содержит все возможные вычислимые числа: здесь может быть много повторений, но это делу не мешает.
Теперь перейдем к финалу. Давайте возьмем числа на диагонали (они выделены жирным шрифтом) и изменим их, прибавляя 1 (что похоже на доказательство Кантора). Мы получаем последовательность вида 1123…. Это вычислимое число (поскольку последовательность шагов, основанная на
th и машине Тьюринга, действует в каждом предполагаемом случае), поэтому машина, которая производит это число, уже должна присутствовать где-то в таблице. Однако ее нет: она отличается от первого ряда (поскольку мы заставили первую цифру измениться), она отличается от второго ряда (поскольку мы заставили вторую цифру измениться), и так далее, для всех рядов в таблице. То есть, с одной стороны, ряд 1123… должен быть представлен, но, с другой стороны, его нет. Это противоречие, поэтому предположение о существовании «остановочной машины»
th, которое мы использовали, должно быть ложным. Мы доказали (и это подтверждено более строгим и авторитетным доказательством Тьюринга), что не существует ни одной общей универсальной алгоритмической процедуры, которую можно использовать, чтобы судить, придут ли к концу данные вычисления или нет. Это влечет, в свою очередь, то, что не может существовать никакого общего алгоритма для решения математических задач, и поэтому
Entscheidungsproblem не имеет решения.
Теперь я перехожу к высшей точке этой главы, к тому, что называют самым красивым достижением логики двадцатого века, к
теореме Гёделя. Австрийский логик Курт Гёдель (1906-1978) родился в Брюнне, Австро-Венгрия (ныне Брно, Республика Чехия), где работал Грегор Мендель, и учился в Венском университете. Хотя он и не был евреем (вопреки утверждению Бертрана Рассела), Гёдель не смог терпимо относиться к нацистским репрессиям и в 1934 г. поехал в США, в 1940 г. эмигрировал туда насовсем и провел оставшуюся часть жизни в Принстоне, где он и Эйнштейн стали большими друзьями. Конечно, в свои последние годы Гёдель внес существенный вклад и в общую теорию относительности, когда обнаружил неожиданное решение уравнений Эйнштейна, позволяющее времени течь в прошлое. По своему облику и образу жизни Гёдель не был человеком, которого можно было считать вполне приемлемым в обществе. Возвратись в Австрию после своей первой поездки в США, он женился на разведенной танцовщице и увез ее в Принстон, где ее не могли хорошо принять из-за преобладавшего в то время снобизма. К концу жизни у него развились классические признаки депрессии и паранойи: он был убежден, что является жертвой тайного общества убийц, что в конце концов привело его к отказу от еды и к ношению лыжной маски, чтобы избежать заражения во время прогулок в опасной и сильно загрязненной, как он считал, атмосфере Принстона. Он скончался, веся лишь 30 кг, от «недоедания и истощения» (вызванных отказом от пищи), явившихся, как гласит заключение о смерти, результатом «душевного расстройства».
Существуют несколько теорем, связанных с именем Гёделя. Здесь мы сосредоточимся на теореме, опубликованной в 1931 г. в статье
Über formal unentscheidbare Sätze der Principia Mathematica und verwandter Systeme (О формальной неразрешимости предложений в
Principia Mathematica и связанных с ней системах). В этой статье он показал, что в любой системе математических аксиом существуют метаматематические предложения, которые нельзя ни доказать, ни опровергнуть посредством формального вывода, основанного на аксиомах системы.
Это мы и сделаем. Математика представляет собой последовательность предложений, таких как 1 + 1 = 2, и «это является доказательством данного предложения»; первое предложение является математическим, в смысле Гильберта, а второе метаматематическим. Давайте предположим, что мы можем записать все предложения, которые можно вывести из фундаментальных аксиом (например, из аксиом Пеано или более разработанной системы, основанной на усовершенствованной теории типов, которой пользовались Рассел и Уайтхед). Это даст нам предложения
p0,
p1,
p2, … и так далее. Как мы решим пронумеровать предложения, не имеет значения, но несколько изложенных ниже аргументов дадут вам ощутить аромат того, как действовал Гёдель.
В формулировке арифметики, подобной формулировке Пеано, имеется лишь небольшое число символов.
Например, одна из аксиом гласит «элемент, непосредственно следующий за числом, есть также число». Мы ввели обозначение
х' = sx, где
s означает «непосредственно следующий за», так что
s0 = 1,
s1 = ss0 = 2, и так далее. Гёдель приписал число каждому элементарному знаку, используемому в выражениях. Предположим, что он приписал 5 знаку «=» и 7 знаку
s. Каждая отдельная переменная, такая как
x, описывается отдельным простым числом, большим 10. Например, мы припишем
x число 11, а
х' число 13. Гёделевским номером предложения является произведение всех чисел, соответствующих символам, которые содержит предложение; так, нашему предложению
х' = sx приписывается значение 13 (для
x') × 5 (для «=») × 7 (для
s) × 11 (для
x), что дает 5005. Заметим, что посредством этой процедуры каждое предложение, включая аксиомы формализма, наделяется единственным номером
[52], поэтому связи между предложениями становятся связями внутри арифметики. Например, мы можем ответить на метаматематический вопрос: встречается ли это предложение в более длинном, более сложном предложении, выяснив, является ли 5005 множителем в гёделевском номере сложного предложения, также как 5 является множителем 75.
Снабдим предложения индексами, используя их гёделевские номера, так что предложение
х' = sx относительно числа 6 (которое должно читаться 6 =
s5
, «6 непосредственно следует за 5») есть предложение
p5005(6). Вы можете ожидать, что сложные предложения имеют большие гёделевские номера, но в том, что последует ниже, мы будем делать вид, что можем обойтись малыми номерами, такими как
p1(6) и
p4(6). Например, мы можем сделать вид, что Предложение 4, примененное к числу 6, является метаматематическим утверждением «6 есть совершенное число» (число, являющееся суммой своих простых множителей, в данном случае включая 1, 6 = 1 + 2 + 3 и 6 = 1 × 2 × 3), а Предложение 5 может сообщать о простых числах, и мы можем прочесть
p5(11) как «11 есть простое число».
Математическое доказательство состоит из строки предложений, которые выводятся одно из другого с помощью использования правил обращения с символами. Это означает, что мы можем приписать отдельный номер
целому доказательству, отметив гёделевские номера всех входящих в него предложений. Если доказательство состоит из трех предложений с гёделевскими номерами 6, 8 и 2 (на практике эти номера были бы огромны), то всему доказательству приписывается номер 2
6 × 3
8 × 5
2 = 10 497 600 (для более длинных доказательств ряд простых чисел 2, 3, 5 последовательно продолжают). Как вы можете вообразить, длинные доказательства, состоящие из сложных предложений, имеют астрономически большие гёделевские номера. И снова смыслом этой процедуры является то, что целые доказательства включаются в область арифметики. Мы можем использовать арифметические процедуры, чтобы, например, судить, используется ли одно доказательство в другом, определяя, входит ли гёделевский номер первого множителем в гёделевский номер второго, подобно тому, как 15 = 5 × 3 означает, что 5 и 3 являются компонентами 15.
Теперь мы воспользуемся этими гёделевскими номерами, чтобы вывести результат Гёделя с помощью вариации процедуры из метода Кантора и решения Тьюрингом проблемы вычислимости. На самом деле Гёдель использовал гораздо более глубокие методы, доказав пятьдесят промежуточных теорем — опорные базы, — прежде чем достичь завершения доказательства. Следующий далее текст лишь ухватывает суть дела: представьте себе это как полет вертолета над вершиной горы. Однако, поскольку доказательство все же является трудным, даже урезанное и упрощенное до той степени, до которой мне удалось его адаптировать, вы можете свободно перескочить к месту, где восстанавливается нормальный размер шрифта.
Предположим, что у нас есть некоторое предложение относительно числа 0, мы назовем это предложение
p0(0), и такое же предложение относительно числа 1, которое мы назовем
p0(1), и так далее. Обозначим вообще это предложение относительно числа
x как
p0(x). Эти предложения могут быть истинными, а могут ложными. Например, предложение «квадратный корень из
x равен 1» в случае
p0(0) ложно, поскольку утверждает, что √0 = 1, что неверно, но в случае
p0(1) оно истинно, так как √1 = 1. Каждое из этих предложений имеет гёделевский номер, который мы можем вычислить, и существует бесконечное число таких предложений относительно каждого из бесконечного числа натуральных чисел. Обозначим эти предложения как
p0(x), p1(x) и так далее: некоторые из них являются мусором, некоторые верны. Организуем теперь все соответствующие им гёделевские номера в огромную таблицу (с астрономически большими номерами там, где мы подставили малые номера). Верхний левый фрагмент этой таблицы может быть чем-то вроде:
Вход |
0 |
1 |
2 |
3 |
Предложение |
0 |
0 |
55 |
27 |
4 |
1 |
51 |
3 |
7 |
17 |
2 |
0 |
20 |
30 |
40 |
3 |
13 |
22 |
11 |
2 |
где каждое число во внутренних клетках таблицы есть (фальшивый) гёделевский номер соответствующего предложения. Так, фальшивый гёделевский номер предложения
p3(x) относительно числа 2 равен 11.
Теперь составим отдельный список гёделевских номеров всех предложений, которые
являются доказуемыми с помощью аксиом системы. Подобно нашему предположению о существовании заслуживающей доверия машины Тьюринга для решения вопроса о том, остановятся вычисления или нет, мы предположим, что такой список может быть составлен, но если это приведет нас к противоречию, нам придется отвергнуть это предположение.
И здесь, как и в аргументах Тьюринга, нас ожидает провал. Рассмотрим следующее предложение:
Гёделевский номер этого диагонального члена отсутствует в списке доказуемых утверждений.
«Диагональным членом» является предложение относительно собственного номера предложения, например, предложение
p2 относительно числа 2. Поскольку это утверждение является предложением, оно должно уже содержаться где-то в первоначальном исчерпывающем списке предложений. Для простоты давайте предположим, что оно оказывается Предложением 2. Коль это так, рассмотрим соответствующий диагональный гёделевский номер, который в этом случае равен 30. Этот гёделевский номер соответствует Предложению 2 относительно числа 2, которое гласит:
Не существует доказательства Предложения 2 относительно числа 2.
Теперь мы подходим к противоречию. Предположим, что мы узнали, обратись к полному списку доказуемых утверждений, что это предложение действительно верно (а значит, его гёделевский номер должен быть в списке доказуемых утверждений), то есть можно доказать, что доказательства Предложения 2 относительно числа 2 не существует. Тогда у нас получается противоречие, поскольку, если не существует доказательства Предложения 2 относительно числа 2, то его номера не должно быть в списке доказуемых утверждений! Если мы вместо этого предположим, что предложение о том, что не существует доказательства Предложения 2 относительно числа 2, является ложным, тогда его нет в списке доказуемых утверждений, а тогда это предложение истинно!
Мы достигли точки, в которой нам приходится заключить, что система аксиом, которой мы пользуемся, недостаточна для того, чтобы принять решение о том, что верно: это предложение или его отрицание.
Математика неполна. Это означает, что существует бесконечное число математических утверждений, которые, возможно, верны, но не могут быть выведены из данного множества аксиом. В этом состоит основание для одного из моих вводных замечаний. Удивительно не только то, что мы можем считать (поскольку натуральные числа столь редки во вселенной всех чисел), удивительно, что мы можем делать с числами что-то арифметическое (потому что формально доказуемые выражения являются тоже очень редкими).
Заключение Гёделя не стало судным днем математики. Во-первых, могут существовать неалгоритмические методы установления истинности утверждений, так же как может быть невозможно формально доказать, что определенная позиция в шахматах не приводит к мату, но ее можно увидеть с более объемлющей точки зрения. То есть может существовать метаматематическое доказательство утверждения, которое не может быть доказано внутри формальной системы. То, что человеческий ум способен порождать такие неформальные, но вполне надежные доказательства, является окном в природу сознания, ибо это показывает, что понимание и рефлексия не нуждаются в том, чтобы быть алгоритмическими.
Математика прошла через три главных кризиса в своей истории. Первым было открытие древними греками несоизмеримости и существования иррациональных чисел, обрушившее философию пифагорйцев. Вторым было появление дифференциального исчисления в семнадцатом веке, сопровождавшееся страхом, что иметь дело с бесконечно малыми незаконно. Третьим кризисом стало столкновение с антиномиями в начале двадцатого века, такими как антиномия Рассела или парадокс Берри, которые, как казалось, подорвали основы этой науки. В свете этого кажется замечательным, что математика выжила как дисциплина. Тем, что это произошло, мы обязаны старому доброму здравому смыслу: существует огромная и чудесная наука математика, которая, по-видимому, превосходно работает, и было бы глупо отметать предмет, приводящий к таким замечательным успехам, даже если и есть ненадежные области в глубинах его структуры. Работающие математики могут продолжать трудиться без страха и не заботясь о трещинах глубоко в основании, которые, как они предполагают, навряд ли могут проложить себе путь на поверхность в любом. актуальном приложении. Второй причиной, конечно, является то, что математика просто слишком полезна и является наилучшим языком описания физического мира. Пропади математика, пропали бы большинство наук, торговля, транспорт, промышленность и средства связи.
Но возникает вопрос: почему математика, высший продукт человеческого ума, так великолепно приспособлена для описания Природы? И здесь я позволю себе заключительную завитушку, личный полет фантазии, представляющий собой чистую спекуляцию, не основанную на науке и поэтому совершенно лишенную всякой авторитетности. Это покажет, каким я на самом деле являюсь греком (древним, разумеется) и кантианцем в душе, несмотря на мои малодушные насмешки над их спекулятивными философиями. Здесь я намереваюсь быть более греком, чем сами греки, поглядеть, не являюсь ли я более кантианцем, чем сам Кант, и исследовать вопрос: а не существует ли глубокой связи между платоновским реализмом, кантианством и брауэровским интуиционизмом, а также гильбертовским формализмом?
В проблеме, с которой мы столкнулись, есть два главных момента. Один заключается в том, что математика есть внутренний продукт человеческого ума. Второй состоит в том, что математика оказывается удивительно хорошо приспособленной к описанию внешнего физического мира. Как это получается, что внутреннее так хорошо соответствует внешнему? Если мы примем кантианский взгляд на мозг, мы можем предположить, что он развивался таким способом, который наделил его способностью различать множества, соответствующие натуральным числам (в кантовских терминах, синтетическим
a priori) и представлять эти числа в трех измерениях в форме геометрии (синтетической
a priori тоже, но только локально, поскольку мы знаем, что евклидова геометрия не справедлива на больших масштабах и вблизи массивных тел). Кант наших дней мог бы утверждать, что у нас возникает столько проблем с представлением иррациональных чисел и неевклидовой геометрии потому, что эти концепции не входят в программное обеспечение нашей нейронной сети, из-за некоего рода эволюционной адаптации к локальному окружению, и нам нужно прилагать реальные умственные усилия, чтобы созерцать их свойства.
Двигаясь дальше, мы можем также предположить, что простые операции с этими понятиями также структурно представлены в программном обеспечении нашего мозга. Эта идея предполагает, что лежащие в основе других операций логические операции являются встроенными и у нас есть программно обеспеченная способность к построению алгоритмов. Я не утверждаю, что эта способность принадлежит исключительно мозгу: сегодня существует большой интерес к умозрительным предположениям о существовании нелокальной активности мозга, которая дает нам возможность рассматривать связи неалгоритмическими способами, и кое у кого имеются умозрения (Роджер Пенроуз является ведущим пропагандистом этого взгляда), что сознание есть внутренне нелокальный квантовый феномен. Хотя я был бы удивлен, если бы это оказалось правдой, это не станет составной частью моего собственного умозрения, когда я сконцентрируюсь на алгоритмических процессах в мозгу, на гильбертовском алгоритмическом сопроцессоре для большей, более метаматематической, возможно, нелокальной способности мозга. Коротко говоря, для алгоритмических вычислений мы можем занять позицию, которую допустимо назвать «структуралистской», подобной той, с которой Ноам Хомский смотрел на внутреннюю способность человека к языку, и представлять себе нашу логическую способность как кантовское проявление программно обеспеченной алгоритмической компоненты мозга, которая возникла под давлением эволюции. Наша способность создавать математические взаимосвязи, выводить теоремы и так далее является следствием этой структуры.
Двигаясь из головы наружу, нам следует теперь рассудить, почему физический мир представляется рукой в математической перчатке. Здесь я вступаю на еще более предательскую спекулятивную почву. Мы видели связь чисел с множествами и принадлежащее Фреге отождествление чисел с расширениями определенных множеств. В подобном же духе веселый венгро-американский математик Джон (Иоганн) фон Нейман (1903-57), которого считают, наряду с Тьюрингом, отцом современного компьютера, предложил возможность отождествления натуральных чисел с некоторыми очень простыми множествами. А именно, он идентифицировал 0 с пустым множеством {}, множеством, не содержащим элементов. Затем он перешел к отождествлению 1 с множеством, содержащим пустое множество, 1 = {{}}, 2 с множеством, содержащим пустое множество и множество, которое содержит пустое множество, 2 = {{}, {{}}}, затем 3 = {{}, {{}}, {{}, {{}}}}, и так далее.
[53] Так фон Нейман закрутил весь мир чисел из абсолютного ничто и дал нам арифметику
ex nihilo.
Я утверждал где-то в другом месте, что, поскольку у меня не хватает воображения, чтобы представить себе, каким еще способом явное нечто может произойти из абсолютного ничто, появление Вселенной
ex nihilo должно было происходить именно так, как фон Нейман наколдовал нам натуральные числа из пустого множества. Тот факт, что Вселенная пережила свое собственное творение, следует тогда интерпретировать как указание на то, что объекты, начавшие существовать таким путем, являются логически самосогласованными, в противном случае космос коллапсировал бы. Поэтому существует внутренняя логическая структура Вселенной, которая является той же структурой, что и арифметика.
Теперь мы соединим вместе эти пузырящиеся потоки легковесных спекуляций. Когда математик сталкивается с физическим миром, тот кажется ему его собственной рефлексией. Наши мозги, как и их продукт, математика, имеют в точности ту же логическую структуру, что и сама физическая Вселенная, структуру пространства-времени и населяющих его объектов. Неудивительно тогда (вспомним Вигнера и Эйнштейна), что порожденная мозгом математика дает совершенный язык для описания физического мира.
Все это, возможно, чепуха. А может быть, и нет. Тогда одним из следствий могло бы быть, что глубинной структурой мира является математика: Вселенная, все ее содержимое, есть математика, ничего, кроме математики, а физическая реальность есть внушающая ужас и благоговение ипостась математики. Это радикальный платонизм, ультранеоплатонизм, то, что я где-то назвал «глубинным структурализмом». То, что кажется нам осязаемым — земля, воздух, огонь и вода, — есть не более чем арифметика. Если это так, то теорема Гёделя приложима, в определенном смысле, ко всей Вселенной. Мы никогда не можем знать, действительно ли Вселенная является самосогласованной. Если нет, то возможно, что в некоторый момент в будущем она внезапно придет к концу, или несогласованность распространится на всю ее структуру подобно чуме, сминая логику на своем пути и, подобно ржавчине, уничтожая структуры. Все существующее возвратится к источнику, из которого вышло, к пустому множеству, к поразительно могущественному понятию абсолютного ничто.
А пока это могущество наше, и им можно наслаждаться. Если эта точка зрения верна, то все вокруг нас является внушающим благоговение цветением пустоты, явленным нам в ощущениях и сопровождаемым восторгом чувств, углубленных интеллектом и обостренных наукой, этой наследницей прозрения Галилея, его докучливого перста. Я не могу представить себе ничего более подвижного и ничего более чудесного.
48.
Отрицательные числа были известны древним индусам, которые понимали их как «долг», в отличие от «прибыли». —
Прим. пер.
49.
Как же они были правы. Теперь мы знаем, что бобы богаты углеводами, которые наши ферменты переварить не могут, а бактерии E.coli, населяющие наш кишечник, могут; когда они их переварят, они освобождают большое количество двуокиси углерода и водорода, которые являются главным источником метеоризма.
50.
Значение
π было вычислено до нескольких тысяч знаков. С 1589 места начинают повторяться и идут подряд четыре цифры 7, но сразу после этого они перемежаются другими цифрами.
51.
Заметим, что логичный Фреге считал таковым и себя.
52.
В интересах простоты я сократил процедуру вычисления до формы, в которой она не вполне хорошо работает, в частности, из-за того, что в расчет не принят порядок символов. Процедура Гёделя является более изощренной.
53.
Строго говоря, впервые такую конструкцию придумал не менее веселый древнекитайский философ-даос Чжуан-цзы (IV-III в. до н.э.). Он писал (следует учесть, что в даосизме «вся тьма вещей» = одно = дао, а «дао пусто»): «Небо и Земля живут вместе со мной, вся тьма вещей составляет со мной одно. Коль скоро мы составляем одно — что еще тут можно сказать? Но уж коли мы заговорили об одном, то можно ли обойтись без слов? Единое и слова о нем составляют два, а два и одно составляют три. Начиная отсюда, даже искуснейший математик не доберется до конца чисел, что уж говорить об обыкновенном человеке?» —
Прим. пер.