Теорема Гёделя о неполноте
Всякая система математических аксиом начиная с определенного уровня сложности либо внутренне противоречива, либо неполна.
В 1900 году в Париже прошла Всемирная конференция математиков, на которой Давид Гильберт (David Hilbert, 1862–1943) изложил в виде тезисов сформулированные им 23 наиважнейшие, по его мнению, задачи, которые предстояло решить ученым-теоретикам наступающего ХХ века. Под вторым номером в его списке значилась одна из тех простых задач, ответ на которые кажется очевидным, пока не копнешь немножечко глубже. Говоря современным языком, это был вопрос: самодостаточна ли математика? Вторая задача Гильберта сводилась к необходимости строго доказать, что система аксиом — базовых утверждений, принимаемых в математике за основу без доказательств, — совершенна и полна, то есть позволяет математически описать всё сущее. Надо было доказать, что можно задать такую систему аксиом, что они будут, во-первых, взаимно непротиворечивы, а во-вторых, из них можно вывести заключение относительно истинности или ложности любого утверждения.
Возьмем пример из школьной геометрии. В стандартной Евклидовой планиметрии (геометрии на плоскости) можно безоговорочно доказать, что утверждение «сумма углов треугольника равна 180°» истинно, а утверждение «сумма углов треугольника равна 137°» ложно. Если говорить по существу, то в Евклидовой геометрии любое утверждение либо ложно, либо истинно, и третьего не дано. И в начале ХХ века математики наивно полагали, что такая же ситуация должна наблюдаться в любой логически непротиворечивой системе.
И тут в 1931 году какой-то венский очкарик — математик Курт Гёдель — взял и опубликовал короткую статью, попросту опрокинувшую весь мир так называемой «математической логики». После долгих и сложных математико-теоретических преамбул он установил буквально следующее. Возьмем любое утверждение типа: «Предположение №247 в данной системе аксиом логически недоказуемо» и назовем его «утверждением A». Так вот, Гёдель попросту доказал следующее удивительное свойство любой системы аксиом:
«Если можно доказать утверждение A, то можно доказать и утверждение не-A».
Иными словами, если можно доказать справедливость утверждения «предположение 247 недоказуемо», то можно доказать и справедливость утверждения «предположение 247 доказуемо». То есть, возвращаясь к формулировке второй задачи Гильберта, если система аксиом полна (то есть любое утверждение в ней может быть доказано), то она противоречива.
Единственным выходом из такой ситуации остается принятие неполной системы аксиом. То есть, приходиться мириться с тем, что в контексте любой логической системы у нас останутся утверждения «типа А», которые являются заведомо истинными или ложными, — и мы можем судить об их истинности лишь вне рамок принятой нами аксиоматики. Если же таких утверждений не имеется, значит, наша аксиоматика противоречива, и в ее рамках неизбежно будут присутствовать формулировки, которые можно одновременно и доказать, и опровергнуть.
Итак, формулировка первой, или слабой теоремы Гёделя о неполноте:
«Любая формальная система аксиом содержит неразрешенные предположения».
Но на этом Гёдель не остановился, сформулировав и доказав вторую, или сильную теорему Гёделя о неполноте:
«Логическая полнота (или неполнота) любой системы аксиом не может быть доказана в рамках этой системы. Для ее доказательства или опровержения требуются дополнительные аксиомы (усиление системы)».
Спокойнее было бы думать, что теоремы Гёделя носят отвлеченный характер и касаются не нас, а лишь областей возвышенной математической логики, однако фактически оказалось, что они напрямую связаны с устройством человеческого мозга. Английский математик и физик Роджер Пенроуз (Roger Penrose, р. 1931) показал, что теоремы Гёделя можно использовать для доказательства наличия принципиальных различий между человеческим мозгом и компьютером. Смысл его рассуждения прост. Компьютер действует строго логически и не способен определить, истинно или ложно утверждение А, если оно выходит за рамки аксиоматики, а такие утверждения, согласно теореме Гёделя, неизбежно имеются. Человек же, столкнувшись с таким логически недоказуемым и неопровержимым утверждением А, всегда способен определить его истинность или ложность — исходя из повседневного опыта. По крайней мере, в этом человеческий мозг превосходит компьютер, скованный чистыми логическими схемами. Человеческий мозг способен понять всю глубину истины, заключенной в теоремах Гёделя, а компьютерный — никогда. Следовательно, человеческий мозг представляет собой что угодно, но не просто компьютер. Он способен принимать решения, и тест Тьюринга пройдет успешно.
Интересно, догадывался ли Гильберт, как далеко заведут нас его вопросы?
Курт Гёдель (нем. Kurt Gödel), (1906–1978 гг.)
Австрийский, затем американский математик. Родился в г. Брюнн (Brünn, ныне Брно, Чехия). Окончил Венский университет, где и остался преподавателем кафедры математики (с 1930 года — профессором). В 1931 году опубликовал теорему, получившую впоследствии его имя. Будучи человеком сугубо аполитичным, крайне тяжело пережил убийство своего друга и сотрудника по кафедре студентом-нацистом и впал в глубокую депрессию, рецидивы которой преследовали его до конца жизни. В 1930-е годы эмигрировал было в США, но вернулся в родную Австрию и женился. В 1940 году, в разгар войны, вынужденно бежал в Америку транзитом через СССР и Японию. Некоторое время проработал в Принстонском институте перспективных исследований. К сожалению, психика ученого не выдержала, и он умер в психиатрической клинике от голода, отказываясь принимать пищу, поскольку был убежден, что его намереваются отравить. |
Энциклопедия Джеймса Трефила «Природа науки. 200 законов мироздания».
Джеймс Трефил — профессор физики университета Джорджа Мэйсона (США), один из наиболее известных западных авторов научно-популярных книг.
Похожее
-
Алексей Сосинский
Теорема Гёделя, наряду с открытием теории относительности, квантовой механики и ДНК, обычно рассматривается как крупнейшее научное достижение ХХ века. Почему? В чем ее суть? Каково ее значение? Эти вопросы в своей лекции раскрывает Алексей Брониславович Сосинский, математик, профессор Независимого московского университета, офицер Ордена академических пальм Французской Республики, лауреат премии Правительства РФ в области образования 2012 года. В частности, были даны несколько разных ее формулировок, описаны три подхода к ее доказательству (Колмогорова, Чейтина и самого Гёделя), и объяснено ее значение для математики, физики, компьютерной науки и философии.
-
Владимир Успенский
Теорема Гёделя о неполноте — едва ли не самая знаменитая теорема математики. Она утверждает, что какие бы способы доказывания ни предложить, в любом достаточно богатом языке найдутся истинные, но не доказуемые утверждения. Богатство языка есть его способность выражать факты. Оказывается, что для целей теоремы Гёделя богатство языка достаточно понимать как его способность выражать принадлежность натуральных чисел перечислимым множествам.
-
Владимир Успенский
Знаменитая Теорема Гёделя о неполноте имеет две версии — синтаксическую (объявленную и доказанную самим Гёделем) и семантическую (чаще всего фигурирующую в популярных рассуждениях о великой Теореме). Семантическая версия утверждает, что какую бы систему формальных доказательств ни придумать, в языке найдутся истинные утверждения, не доказуемые в рамках предложенной системы. Таким образом, семантическая версия исходит из того, что некоторые выражения языка выражают осмысленные утверждения, являющиеся истинными или ложными. Синтаксическая версия не опирается на то, что какие бы то ни было выражения языка имеют какой-то смысл, она смотрит на выражения как на синтаксические конструкции, то есть как на цепочки символов, организованные по определённым правилам.
-
Отрывок из книги книга Дэвида Дарлинга и Агниджо Банерджи «Эта странная Математика — на краю бесконечности и за ним» о том, как Гедель доказал существование Бога и почему пифагорейцы утопили математика Гиппаса.
-
Грегори Чейтин
Из идей сложности и случайности, впервые высказанных Готфридом Лейбницем в его «Рассуждении о метафизике» (1686), и их подтверждения в современной теории информации следует, что невозможно создать «самую общую теорию всего» в математике.
-
Veritasium
Возможно ли доказать всё, что истинно? Поиски ответа на этот вопрос раскололи математическое сообщество, заставили нас пересмотреть своё представление о бесконечности, помогли выиграть Вторую мировую войну и создать устройство, на котором вы посмотрите это видео. Как именно, расскажет Дерек Маллер в новом видео от Veritasium.
-
Питер Эткинз
Эта книга предназначена для широкого круга читателей, желающих узнать больше об окружающем нас мире и о самих себе. Автор, известный ученый и популяризатор науки, с необычайной ясностью и глубиной объясняет устройство Вселенной, тайны квантового мира и генетики, эволюцию жизни и показывает важность математики для познания всей природы и человеческого разума в частности.
-
Джордана Цепелевич
Всякая надежда на создание единой математической теории, амбициозного проекта, который был предложен математиком Давидом Гильбертом в 19 веке и продолжил существовать, поддерживаемый многими, в 20 столетии, рухнула. Основы математики были далеко не столь надежными, как того хотел бы Гильберт. А Гëдель своими теоремами ясно продемонстрировал, что любая система аксиом, какой бы обширной она ни была, уязвима для возникновения невосполнимых пробелов. Попытки же восполнить их созданием более полной системы породили бы только бóльшее количество утверждений без доказательств — так что и тут возникнет необходимость в усовершенствовании системы, и так далее до бесконечности. И случилось нечто странное: математики решили не обращать на это внимания. Они посчитали, что неполнота систем не имеет непосредственного влияния на их работу.
-
Лев Беклемишев
Классическая логика высказываний исходит из предположения о том, что любые высказывания либо истинны, либо ложны. Логика доказуемости отражает более глубокую картину мира, осознанную после теорем Гёделя о неполноте: истинность высказывания, вообще говоря, не равносильна его доказуемости. Можно ли — и если да, то как — говорить на уровне логики о доказуемости или недоказуемости высказываний, наряду с их истинностью или ложностью? Программа: Логика высказываний и её модели. Модальная логика, модели Крипке. Логика Гёделя-Лёба GL. Теорема о полноте логики GL по Крипке на конечных деревьях. Формальная арифметика Пеано. Гёделева нумерация. Теорема о неподвижной точке. Формулы доказуемости и непротиворечивости. Теоремы Гёделя, Россера и Лёба. Доказуемость как модальность: арифметическая интерпретация логики GL. Замкнутые модальные формулы, последовательность Тьюринга, локальная рефлексия. Существование и единственность модально определимых неподвижных точек (теорема де Йонга).
-
Иванов Е. М.
Речь в данной работе пойдет о так называемом "геделевском аргументе", который используется как аргумент против возможности создания искусственного интеллекта. Суть аргумента заключается в следующем: полагают, что из теоремы Геделя о неполноте формальных систем вытекает принципиальное различие между искусственным ("машинным") интеллектом и человеческим умом, а именно, полагают, что теорема Геделя указывает на некоторое принципиальное преимущество человеческого ума перед "умом" машинным - т.е. человек обладает способностью решать проблемы, принципиально неразрешимые для любых искусственных "интеллектуальных" систем (так называемые "алгоритмически неразрешимые" проблемы), причем ограниченность "искусственного ума" проистекает из его "формального" характера.
Далее >>>
|
|