Отрывок из книги Дэвида Дарлинга и Агниджо Банерджи «Эта странная Математика — на краю бесконечности и за ним» о том, как Гедель доказал существование Бога и почему пифагорейцы утопили математика Гиппаса.
Математика — единственная наука, где возможна абсолютная достоверность. Ее утверждения и теоремы могут быть доказаны безусловно и безоговорочно и останутся истинными уже навсегда. Именно поэтому математики так одержимы поиском доказательств. Строго доказанное предположение становится неопровержимым фактом, незыблемым фундаментом для будущих исследований. Единственное неизбежное и досадное облако, омрачающее в остальном ясный горизонт математики, — это сознание того, что всегда, в любой математической системе, будут существовать утверждения, которые невозможно ни доказать, ни опровергнуть средствами самой этой системы.
Примерно в 1941 году логик австрийского происхождения Курт Гёдель, близкий друг и коллега Эйнштейна по Институту перспективных исследований в Принстоне, доказал существование Бога. В отличие от Эйнштейна, чьи религиозные убеждения находились где-то посередине между агностицизмом и пантеизмом (однажды он сказал, что верит в «Бога Спинозы»), Гёдель был не посещающим церковь теистом и, по утверждению его жены, «каждое воскресное утро читал в постели Библию». Опубликованное им доказательство существования Бога, впрочем, не имело никакого отношения ни к его лютеранским корням, ни вообще к чему-либо, что могло бы найти отклик в душе человека неискушенного. Оно представляло собой плод его изощренного математического ума. Первая строка выглядит так:
{P(φ) ˄ ∀x[φ(x) → ψ(x)]} → P(ψ)
Последующие выкладки тоже мало что проясняют. Заканчивается доказательство кульминационным
∃x G(x)
Для нас, простых смертных, это означает: «Нечто богоподобное безусловно существует».
Само собой разумеется, доказательство Гёделя не могло остаться неоспоренным. И хотя, записанное в нотации так называемой модальной логики, оно выглядит весьма впечатляюще и строго научно, основано оно на множестве сомнительных и спорных допущений. Совсем иначе обстоит дело с результатами других, более известных исследований Гёделя — прежде всего с его потрясшими мир теоремами о неполноте, о которых мы поговорим чуть позже.
Для разных людей «доказательство» означает разные вещи. Для юриста оно может принимать различные формы в зависимости от типа разбираемого дела и судебного органа. В юриспруденции доказывание по сути сводится к сбору свидетельских показаний и вещественных улик, причем требования к их объему и качеству, необходимые, чтобы убедить судью или жюри присяжных, разнятся при рассмотрении гражданских и уголовных дел. В гражданском процессе решение основывается на принципе большей вероятности: судья вправе признать ответчика виновным, если придет к заключению, что тот «вероятнее всего» нарушил закон или что существуют «обоснованные подозрения». В англо-американской системе уголовного права обвиняемый считается невиновным, пока его вина не доказана; в этом случае «доказательством» признается не просто высокая вероятность виновности, но виновность «вне всяких разумных сомнений».
Ученым-естественникам, как и юристам, чаще приходится иметь дело со свидетельствами, чем с доказательствами. Современные ученые вообще обходятся довольно скромными формулировками и предпочитают не употреблять термины «доказательство» и «истина» в некоем абсолютном смысле. Естественные науки — это в основном наблюдения, выстраивание теорий, наиболее логично объясняющих результаты наблюдений, и последующая проверка теорий дальнейшими наблюдениями и экспериментами. Научные теории носят предварительный характер: это лишь лучший для своего времени способ с помощью доступной информации объяснить, как функционирует окружающий нас мир. Всего одного нового подтвержденного факта, не укладывающегося в теорию, достаточно, чтобы разбить ее в пух и прах. Возьмите хоть гравитацию. Аристотель был убежден, что тяжелые предметы падают с большей скоростью, чем легкие, — ведь если одновременно сбросить с высоты камень и перышко, камень приземлится гораздо быстрее. Потребовалось немало хитроумных экспериментов и почти две тысячи лет, чтобы доказать неправоту Аристотеля.
Существует популярная легенда о том, как в 1589 году Галилей окончательно опроверг устаревшие представления о земном тяготении, взобравшись на Пизанскую башню и сбросив оттуда два пушечных ядра разной массы, которые достигли земли одновременно. Скорее всего, такого эксперимента никогда не было: единственный первичный источник, где он упоминается, — это биография Галилея, написанная одним из его учеников, Винченцо Вивиани, и опубликованная спустя годы после смерти автора. Зато мы точно знаем, что Галилей экспериментировал с шарами различной массы, которые он скатывал по наклонным плоскостям, ослабив таким остроумным способом эффекты земного тяготения, что позволило ему более точно измерять скорости, с какими падают тела. Результаты экспериментов Галилея и исследований немецкого астронома Иоганна Кеплера позже были положены Исааком Ньютоном в основу новой теории тяготения. Эту теорию до сих пор преподают в школах, с ее помощью составляют программы полетов космических кораблей по Солнечной системе, и на нее можно положиться почти в любой ситуации, когда требуется оценить гравитационные эффекты. Почти. Проблема в том, что она не всегда дает точный результат. Теория всемирного тяготения Ньютона позволяет с очень хорошей точностью предсказать эффекты гравитации — настолько хорошей, что в обычной ситуации разница между прогнозом и реальностью просто незаметна. И все же это лишь приближение.
В 1915 году Эйнштейн обнародовал свою общую теорию относительности — на сегодняшний день нашу лучшую теорию гравитации. Она объясняет то, чего не может объяснить теория Ньютона, например, такие явления, как смещение орбиты Меркурия или отклонение света звезд вблизи Солнца, и ситуации с экстремальным гравитационным притяжением, как вблизи черных дыр. Никто ни на минуту не считает общую теорию относительности Эйнштейна последним словом в изучении гравитации — ведь она не объясняет, как действует притяжение в мире предельно малого, где царствует квантовая механика. Должна быть какая-то теория, объединяющая законы квантового мира и гравитацию, — мы просто пока не смогли ее найти.
Суть в том, что естественно-научную теорию можно опровергнуть или по крайней мере показать, что она не точна, — но вот доказать, что она всегда, при любых обстоятельствах верна, невозможно. Будущие открытия, о которых мы сегодня ничего не знаем, могут даже от самой стройной и убедительной теории не оставить камня на камне. С математикой же все иначе.
Доказательство — основа всей математической науки. В школе этим занимаются нечасто, там акцент больше на решении задач. Но в высшей математике без доказательства никуда, оно — главнейшая цель всех ученых. Математическую теорию возможно доказать так, чтоб не оставить и тени сомнения в ее правильности, и, будучи доказанной, она уже не изменится. К примеру, теорема Пифагора о сторонах прямоугольного треугольника доказана достоверно: просто немыслимо, что кто-нибудь когда-нибудь ее опровергнет (с оговорками, которые мы обсудим через минуту). Из всех областей знания есть всего две науки — математика и ее близкая родственница логика, — где возможна определенность, не допускающая никаких сомнений.
Так же как и ученые в естественных науках, на начальном этапе математики ищут свидетельства чего-либо, фактический материал — будь то геометрическое правило или закономерность в ряду чисел, — а уже потом выдвигают теорию, объединяющую собранную информацию в единое целое. Но, в отличие от естественных наук, в математике теория не подвергается постоянной доработке на основании новых полученных данных. Сколько бы раз математическая теория ни выдерживала испытания практикой в разных ситуациях и с разными значениями, она не будет признана истинной до тех пор, пока не будет предъявлено ее строгое, безукоризненное доказательство. Сама возможность существования таких доказательств говорит о том, что одних подтверждающих данных, свидетельств, математикам недостаточно.
История доказательств начинается в Древней Греции. До того времени математика служила людям в основном в практических целях: для расчетов, в строительстве и так далее. Существовали арифметические правила, да при работе с фигурами и пространством применялись проверенные опытом методы, но не более того. Понятие доказательства, появившееся около VII века до нашей эры, связано с деятельностью одного из первых известных представителей натурфилософии Фалеса Милетского. Фалес, чьи интересы охватывали почти все области знаний, в том числе философию, естественные науки, инженерное дело, историю и географию, доказал несколько простых начальных теорем в геометрии.
Его соотечественник Пифагор, родившийся полстолетия спустя, известен всем гораздо лучше благодаря теореме, носящей его имя. Сам ли он нашел некое доказательство «теоремы Пифагора», или это сделал кто-то из его последователей, сказать невозможно, поскольку никаких письменных свидетельств о таком доказательстве с тех времен не сохранилось. И вавилоняне, и другие народы знали о существовании правила, гласившего, что квадрат самой длинной стороны прямоугольного треугольника равен сумме квадратов двух других сторон, и применяли его в строительстве. Но кто первый это доказал и в какой форме, неизвестно. Согласно более поздним научным стандартам, то доказательство определенно должно было быть неформальным. Пифагорейцы также причастны к открытию иррациональных чисел — тех, что невозможно представить как отношение одного целого числа к другому. Корни этой идеи опять-таки проследить трудно, но, согласно мифу, один из членов пифагорейского культа, Гиппас, каким-то образом доказал, что квадратный корень из 2 невозможно выразить в виде дроби. Остальных пифагорейцев это открытие якобы привело в такой ужас, что они утопили Гиппаса, дабы скрыть от всех изъян в своей картине мира. Однако те немногочисленные древние источники, в которых упоминается история с утоплением, либо не называют Гиппаса по имени, либо утверждают, что наказание постигло его за другое богомерзкое преступление — он доказал, что возможно построить додекаэдр внутри сферы.
Математическое доказательство сделало огромный шаг вперед и вплотную приблизилось к той форме, в какой оно известно нам сегодня, благодаря трудам другого грека, Евклида, жившего в Александрии, в Египте, в начале III века до нашей эры. В своих «Началах» он заложил основы современной теории доказательств: некие исходные положения, принимаемые как самоочевидные, сочетаются с пошаговыми рассуждениями, когда каждый шаг, основывающийся на одном или нескольких исходных положениях, логически и неоспоримо вытекает из предыдущего.
«Начала» посвящены в основном геометрии и впервые излагают строгие доказательства многих из геометрических теорем, уже известных в то время грекам. Евклид начинает с перечисления пяти основных посылок, называемых теперь постулатами Евклида: например, «От всякой точки до всякой точки [можно] провести прямую линию» и «Ограниченную прямую [можно] непрерывно продолжать по прямой» [Начала Евклида. М., Л.: ГИТТЛ, 1948]. Эти постулаты, которые сегодня мы именовали бы аксиомами, принимаются настолько очевидно верными, что не требуют доказательства. И даже если бы кто-то взялся их доказать, для этого потребовались бы другие исходные положения. С чего-то ведь все равно надо начинать. Сформулировав постулаты, Евклид приступает затем к рассуждениям, строка за строкой с безупречной логикой выводя каждое новое положение из предыдущего, пока не получит полное доказательство той или иной теоремы. Эти теоремы он использует для доказательства уже следующих, и так далее — упорядоченно и последовательно, позволяя читателю с легкостью отслеживать и проверять ход своих рассуждений [И все же Евклид не был абсолютно строг: гораздо позже были обнаружены некоторые утверждения, например так называемая теорема Паша, которые неявно использовались Евклидом в “Началах”, однако не являются следствиями его аксиом. — Прим. науч. ред.].