Математика ≫ Видео [11]
Публикация | Раздел | Комм. |
Александр Кузнецов
Система корней — этот конечный набор векторов в евклидовом пространстве, такой что для любого из этих векторов v зеркальная симметрия s_v относительно гиперплоскости H_v, перпендикулярной к v, сохраняет систему, причем для всякого вектора v' из системы s_v(v') − v' является целым кратным вектора v. Оказывается, системы корней можно полностью классифицировать. Возникает несколько «серий» (бесконечных последовательностей) и несколько «исключительных» систем. Мы поговорим о системах корней в пространствах произвольной размерности, их классификации, и возникающих в связи с этим диаграммах Дынкина.
|
Математика ≫ Видео |
0
|
Ø |
Александр Кириллов
Одна из нерешённых проблем Гильберта — математическая формулировка физики. Эта задача была решена Ньютоном, Лагранжем и Гамильтоном для классической механики, а Шредингером и Гейзенбергом для квантовой механики. Однако, эти решения были совершенно различны. В первом случае математическим аппаратом была симплектическая геометрия, во втором — спектральная теория операторов. Переход от одной теории к другой физики называют квантованием. Тема занятий — перевод этого термина на язык математики.
|
Математика ≫ Видео |
0
|
Ø |
Иван Лосев
Общепринятый формализм классической (гамильтоновой) механики подразумевает, что наблюдаемые образуют алгебру Пуассона, а эволюция системы задается уравнением Гамильтона. В общепринятом квантово-механическом формализме наблюдаемые — это самосопряженные операторы в гильбертовом пространстве, а эволюция задается уравнением Гейзенберга. Эти два уравнения похожи, но природа наблюдаемых совершенно разная. Это затрудняет переход как от классического к квантовому, так и обратно. По этой причине в [BFFLS] был предложен более простой (и более алгебраический) формализм для квантовой механики, в котором квантовая алгебра наблюдаемых становится деформацией классической. Я начну с того, что на примере потенциальной системы объясню возникновение скобки Пуассона и уравнения Гамильтона. Затем я поговорю о деформациях алгебр и объясню почему деформационный формализм с легкостью обеспечивает переход к квазиклассическому пределу.
|
Математика ≫ Видео |
0
|
Ø |
Александр Разборов
Теория сложности вычислений — бурно развивающаяся область теоретической информатики (theoretical computer science) и охватывает как чисто теоретические вопросы, так и вопросы, непосредственно связанные с практикой. Среди наиболее важных приложений этой теории можно назвать способы построения и анализа эффективных алгоритмов, а также современные криптографические методы. Поэтому знакомство с основами теории сложности, безусловно, полезно любому, кто собирается серьезно заниматься практическим программированием или теоретическими исследованиями.
|
Математика ≫ Видео |
1
|
Степанов Геннадий Васильевич
16 Мар 2020 15:13:46 >>>
|
Алексей Семёнов
«Качественная» теория алгоритмов (не касающаяся понятия сложности вычислений) может быть построена на интуитивном представлении о том, что такое алгоритм. Такого представления, при некотором его уточнении, оказывается достаточно для того, чтобы доказать первые базовые теоремы теории алгоритмов. В лекции будет приведено указанное уточнение, определено понятие вычислимости и понятие породимости («выводимости в формальной системе»), доказано несколько теорем, другие теоремы — предложены в качестве задач. Будут приведены и примеры т.н. «уточнения понятия алгоритма». Для понимания лекции желательно умение читать по-русски, знание латинского алфавита и представление о натуральном ряде.
|
Математика ≫ Видео |
0
|
Ø |
Алексей Семёнов
Основные достижения математической логики относятся к математическим исследованиям математических рассуждений (эти исследования даже назвали метаматематикой). Однако методами математической логики можно изучать человеческие рассуждения не только из области математики. При построении математических моделей таких рассуждений используются, в частности, модальные логики. Самыми известными среди них являются логики возможности и необходимости. Для строящихся при этом логических языков определяются: семантика, т.н. «возможных миров» (семантика Крипке) и исчисление (аксиоматическая система), позволяющее формализовать рассуждения. Во многих случаях удаётся достичь полного соответствия между семантикой и исчислением (совпадения истинности и выводимости). В лекции будут приведены некоторые примеры модальных логик и доказано указанное соответствие для одной из них — естественной и хорошо известной.
|
Математика ≫ Видео |
0
|
Ø |
Михаил Цфасман
У древних греков было две никак не связанных между собой науки — арифметика и геометрия. В новое время математики осознали, что геометрические методы можно применять к арифметике, и наоборот. Двадцатый век пошёл много дальше. Сегодня целые числа для нас — геометрический объект ничуть не в меньшей степени, чем окружность. Осознание этого проходит через алгебру и алгебраическую геометрию. На этом пути была доказана великая теорема Ферма, но до неё мы, скорее всего в этих лекциях не дойдем. А впереди маячит гипотеза Римана, до которой не дойдём точно…
|
Математика ≫ Видео |
0
|
Ø |
Юрий Матиясевич
В 1900 году великий немецкий математик Давид Гильберт сформулировал свои знаменитые Математические проблемы. В десятой из них он просил найти алгоритм для распознавания наличия решений у произвольных диофантовых уравнений. Семьдесят лет спустя было установлено, что такого алгоритма не существует. Техника, развитая для доказательства этого, позволила получить ещё много интересных результатов, например, построить многочлен с целыми коэффициентами, множество всех положительных значений которого (принимаемых при произвольных целочисленных значениях переменных) есть в точности множество всех простых чисел.
|
Математика ≫ Видео |
0
|
Ø |
Юлий Ильяшенко
Как менялись наши представления об аттракторах? Чего мы ожидаем от аттракторов? Предполагается, что слушатели знают определение и свойства компактных множеств в евклидовом пространстве, а также знакомы с определениями и примерами гомеоморфизмов и диффеоморфизмов. Последние определения будут даны в курсе, но лучше знать их заранее.
|
Математика ≫ Видео |
0
|
Ø |
Алексей Семёнов
Высказывания математического языка (в том числе, содержащие переменные, от значения которых зависит истинность утверждений) можно записывать на формальном языке математической логики. (Например, можно использовать значок ∀ вместо выражения «для всех».) Однако даже и без точного описания языка математической логики (которое, впрочем, будет дано) можно понять, что значит объяснить (выразить) одно из свойств чисел через другое, например, выразить свойство «быть простым числом» через свойство «делиться». В лекции будут рассмотрены примеры задач, относящихся к выразимости и невыразимости. Среди высказываний математического языка можно выделить те, которые не содержать переменных и называть их утверждениями. Было бы хорошо иметь общий способ, пусть даже и очень громоздкий, который про любое утверждение, касающееся чисел (или иных математических объектов) и отношений между ними, позволяет установить, истинно оно или ложно. Будут приведены примеры, когда такой способ есть, и когда его нет.
|
Математика ≫ Видео |
0
|
Ø |
Сергей Ландо
Числа Гурвица были введены А. Гурвицем в конце 19 века. Они перечисляют разветвленные накрытия двумерных поверхностей и имеют множество других проявлений — перечисляют разнообразные классы графов, являются коэффициентами связи в симметрических группах, представляют собой инварианты Громова–Виттена комплексных кривых.
|
Математика ≫ Видео |
0
|
Ø |
Виктор Клепцын
8 августа 1900 года Давид Гильберт сделал на Втором Математическом конгрессе доклад, представив слушателям ставший с тех пор знаменитым список проблем столетия. За прошедшие сто с лишним лет большая их часть была решена – и, что важнее, в ходе их решения появились новые сюжеты и новое понимание. Я собираюсь затронуть несколько из них и обсудить, в каком контексте они формулировались и куда продвинулось наше понимание за эти сто лет. Этот курс предполагается обзорным и адресованным школьникам (в частности, он не предполагает предварительных сведений).
|
Математика ≫ Видео |
0
|
Ø |
Юлий Ильяшенко
Пусть на плоскости (или на прямой) задано векторное поле: в каждой точке нарисован вектор. Этому полю можно сопоставить дифференциальное уравнение: точка x(t) движется «по стрелочкам» – так, что dx/dt=v(x(t)) при всех t. Типичный вопрос теории динамических систем – описать качественное поведение решений при t→+∞. Скажем, решения могут стремиться к устойчивому положению равновесия, «наматываться» на периодическую траекторию («предельный цикл»), и так далее. Следующий вопрос – а что будет, если система зависит от параметра, и мы начинаем этот параметр менять? Как будет изменяться качественное поведение системы?
|
Математика ≫ Видео |
0
|
Ø |
Иван Аржанцев
Знакомая большинству из вас формула Лейбница утверждает, что (fg)′=f′g+fg′. А какие ещё операции обладают аналогичным свойством? Задавшись этим вопросом, естественно определить дифференцирование алгебры А как такое линейное отображение D из A в A, что D(fg)=D(f)g+fD(g) для любых f,g ∈ A. В этом курсе мы поговорим о дифференцированиях коммутативных алгебр, в первую очередь, алгебры многочленов от многих переменных. Хотелось бы описать все дифференцирования и изучить их свойства. Начала этой теории вполне элементарны. В то же время дифференцирования тесно связаны со сложными задачами алгебраической геометрии, теории групп преобразований и теории представлений.
|
Математика ≫ Видео |
0
|
Ø |
Иван Аржанцев
Автоморфизм n-мерного аффинного пространства — это отображение (x_1,…,x_n) → (f_1,…,f_n), где f_i — многочлены от переменных x_1,…,x_n, для которого существует обратное отображение, также заданное многочленами. Мы начнем с полного описания автоморфизмов прямой, проблему якобиана. Определим ручные и дикие автоморфизмы, докажем, что все автоморфизмы плоскости являются ручными, и немного поговорим о доказательстве теоремы Шестакова и Умирбаева (2004) о том, что автоморфизм Нагаты трехмерного пространства (1972) является диким. Также мы обсудим свойство бесконечной транзитивности действия группы автоморфизмов и его связь с локально нильпотентными дифференцированиями. Будет сформулирован ряд известных открытых проблем аффинной алгебраической геометрии: проблема сокращения, проблема выпрямления, проблема линеаризации для торов и ее связь с градуировками.
|
Математика ≫ Видео |
0
|
Ø |
Иван Аржанцев
Теория кодирования – это отличный повод поговорить о красивых задачах из алгебры и комбинаторики, о линейной алгебре и алгебраической геометрии над конечными полями, конечных геометриях, простых группах и алгоритмах, связанных с передачей информации. Программа курса: Основные задачи теория кодирования. Коды, исправляющие ошибки. Расстояние Хемминга и неравенство треугольника. Предварительные сведения из алгебры. Строение конечных полей. Линейная алгебра над конечными полями. Линейные коды и их характеристики. Код Хемминга. Совершенные коды. Двойственный код и тождество Мак-Вильямса. Эквивалентность кодов. Методы вычисления минимального расстояния для подпространства. Циклические коды и главные идеалы. Алгеброгеометрические коды. Грассманианы и плюккеровы координаты. Грассмановы коды и минимальные расстояния. Точки на минимальной сфере. Алгоритмы декодирования. Синдромы и минимальные представители. Коды Голея. Конечные геометрии и группы Матье.
|
Математика ≫ Видео |
0
|
Ø |
Алексей Белов
Планируется рассказать про свойства символьных последовательностей, и замечательные теоремы с ними связанные и их обобщения. Например, известно, что следующие классы слов почти эквивалентны: буквы a, b самым тщательным образом перемешаны, т.е. в кусках одинаковой длинны количество символов каждого сорта отличается не более чем на 1; количество различных подслов длины n равно n+1, т.е. минимально возможное; слово получается из поворота окружности на величину α при фиксации буквой a попадания на дугу длины α. Обобщение этой теоремы дает задача Арнольда о перекладывания отрезков. Красивые элементарные факты о поведении слов в которые добавляется не слишком много запретов, отражаются на теореме Голода–Шафаревича. Наверное, стоит упомянуть также теорему Ширшова о высоте.
|
Математика ≫ Видео |
0
|
Ø |
Алексей Белов
Произведение элементов пишут в виде слова, изображаемого отрезком. А что значит умножить элементы по кругу? Какой смысл имеет мозаика, составленная из таких кругов? Понимание такого рода вещей приводит к решению ряда открытых вопросов. Например, допустим мы хотим задать конечным числом соотношений полугруппу в которой степень любого элемента равна нулю. Конечным числом запрещенных подслов на прямой нельзя добиться того, чтобы были сколь угодно длинные слова без запрещенных подслов и в то же время не было таких периодических слов. В то же время на плоскости существуют конечные системы запретов допускающие только апериодические замощения. Но как умножать с разных сторон? Эти и другие вопросы предполагается обсудить.
|
Математика ≫ Видео |
0
|
Ø |
Алексей Белов
Всем говорят в школе, что число π иррационально и даже — трансцендентно, т. е. не является корнем многочлена с целыми коэффициентами. Имеется изящное и вполне элементарное доказательство Эрмита иррациональности числа π (требующее только знания интегрирования по частям — понимания как вычислить интеграл ∫ x^k sin(x)dx в пределах от a до b). Наша цель — доказательство теоремы Линдемана–Веерштрасса (если α_i линейно независимые над Q алгебраические числа, то e^(α_i) алгебраически независимы), а также теоремы Гельфонда (если числа α ≠ 0,1; β ∉ Q алгебраические, то αβ есть число трансцендентное).
|
Математика ≫ Видео |
0
|
Ø |
Это фильм в режиме включенного наблюдения, история о реальном исследовании, которое проводится в научно-исследовательском центре «Дискретизация в геометрии и динамике» Технического университета в Берлине. В центр постоянно приезжают математики русского происхождения, работающие по всему миру. Процесс ведения научных дискуссий, запечатленный на камеру, является уникальным по силе воздействия материалом: зритель становится свидетелем размышлений ученых, возникновения гениальных идей, погружается в работу команды и разделяет весь спектр эмоций участников.
|
Математика ≫ Видео |
2
|
Evgeniy
19 Ноя 2016 23:12:09 >>>
|
|
|