Автоморфизмы аффинного пространства
Автоморфизм -мерного аффинного пространства — это отображение , где — многочлены от переменных , для которого существует обратное отображение, также заданное многочленами.
Мы начнем с полного описания автоморфизмов прямой. Про автоморфизмы плоскости известно много, но не все; знаменитый открытый вопрос — это проблема якобиана. Мы определим ручные и дикие автоморфизмы, докажем, что все автоморфизмы плоскости являются ручными, и немного поговорим о доказательстве теоремы Шестакова и Умирбаева (2004) о том, что автоморфизм Нагаты трехмерного пространства (1972) является диким. Также мы обсудим свойство бесконечной транзитивности действия группы автоморфизмов и его связь с локально нильпотентными дифференцированиями. Будет сформулирован ряд известных открытых проблем аффинной алгебраической геометрии: проблема сокращения, проблема выпрямления, проблема линеаризации для торов и ее связь с градуировками.
Хорошо бы понять, почему такие важные и элементарно формулируемые утверждения до сих пор не удается ни доказать, ни опровергнуть.
Несмотря на устрашающие слова, курс полностью элементарен и использует только алгебру многочленов.
Материалы к лекции: 1.pdf (93 Kb); 2.pdf (94 Kb); 3.pdf (99 Kb).
Аржанцев Иван Владимирович, доктор физико-математических наук.
Летняя школа «Современная математика», г. Дубна
21–24 июля 2013 г.
Похожее
-
Иван Аржанцев
Теория кодирования – это отличный повод поговорить о красивых задачах из алгебры и комбинаторики, о линейной алгебре и алгебраической геометрии над конечными полями, конечных геометриях, простых группах и алгоритмах, связанных с передачей информации. Программа курса: Основные задачи теория кодирования. Коды, исправляющие ошибки. Расстояние Хемминга и неравенство треугольника. Предварительные сведения из алгебры. Строение конечных полей. Линейная алгебра над конечными полями. Линейные коды и их характеристики. Код Хемминга. Совершенные коды. Двойственный код и тождество Мак-Вильямса. Эквивалентность кодов. Методы вычисления минимального расстояния для подпространства. Циклические коды и главные идеалы. Алгеброгеометрические коды. Грассманианы и плюккеровы координаты. Грассмановы коды и минимальные расстояния. Точки на минимальной сфере. Алгоритмы декодирования. Синдромы и минимальные представители. Коды Голея. Конечные геометрии и группы Матье.
-
Иван Аржанцев
Знакомая большинству из вас формула Лейбница утверждает, что (fg)′=f′g+fg′. А какие ещё операции обладают аналогичным свойством? Задавшись этим вопросом, естественно определить дифференцирование алгебры А как такое линейное отображение D из A в A, что D(fg)=D(f)g+fD(g) для любых f,g ∈ A. В этом курсе мы поговорим о дифференцированиях коммутативных алгебр, в первую очередь, алгебры многочленов от многих переменных. Хотелось бы описать все дифференцирования и изучить их свойства. Начала этой теории вполне элементарны. В то же время дифференцирования тесно связаны со сложными задачами алгебраической геометрии, теории групп преобразований и теории представлений.
-
Иван Аржанцев
В этом курсе изучается такой замечательный и вполне элементарный объект, как конечномерные коммутативные ассоциативные алгебры над комплексными числами. Здесь достаточно легко доказать первые структурные результаты, но получить полную классификацию едва ли возможно. Мы обсудим различные техники работы с конечномерными алгебрами (максимальные идеалы и локальные алгебры, фильтрации и градуировки, последовательность Гильберта-Самюэля и цоколь) и получим явное описание алгебр малых размерностей. Оказывается, конечномерные алгебры тесно связаны с действиями с открытой орбитой коммутативных групп матриц на аффинных и проективных пространствах. Мы объясним эту связь. В процессе объяснения естественно возникнут такие понятия как экспонента линейного оператора, представление группы и циклический модуль, алгебра Ли и ее универсальная обертывающая.
-
Дмитрий Аносов
Лекции читает Аносов Дмитрий Викторович, доктор физико-математических наук, профессор, академик РАН. Летняя школа «Современная математика», г. Дубна. 16-18 июля 2002 г.
-
Владимир Успенский
Эту формулу нашел Гаусс, он использовал ee в одном из своих доказательств квадратичного закона взаимности. Лишь через несколько лет он сумел доказать, что сумма S_m всегда положительна, так что S_m рано квадратному корню из m. Гаусс записал в дневнике, что его озарение было подобно “вспышке молнии”. Позднее многие известные математики предложили свои доказательства. Одно из самых элегантных принадлежит Дирихле, оно использует ряды Фурье. Предполагается знакомство с понятием сравнения по модулю. Полезно (но необязательно) иметь представление о малой теореме Ферма и о квадратичных вычетах по простому модулю. Знакомства с рядами Фурье не предполагается, необходимые сведения будут сообщены.
-
Аскольд Хованский
Сколько вещественных корней имеет заданный полином с вещественными коэффициентами? Замечательная теорема Штурма дает исчерпывающее решение этой задачи. “Теорема, имя которой я имею честь носить”, – так говорил об этом результате Штурм, который считал его главным достижением своей жизни. Совместна ли заданная система полиномиальных уравнений и неравенств от нескольких вещественных переменных? Теорема Зайденберга–Тарского, отвечающая на этот вопрос, является грандиозным многомерным обобщением теоремы Штурма. В лекциях будет рассказано новое наглядное решение задачи Штурма. Оно несложно переносится на многомерный случай и приводит к доказательству теоремы Зайденберга–Тарского.
-
Сергей Ландо
Что такое каустики, знает всякий, кто когда-либо выжигал по дереву, собирая солнечные лучи с помощью линзы, видел световые блики на дне неглубокого водоема от ряби на поверхности воды или наблюдал игру света, отражающегося от дна чашки. Латинское слово «каустик» означает «жгучий», и им называют множество тех точек в пространстве, в которых собирается больше лучей какого-либо светового потока, чем в соседних точках. Скажем, каустика равномерно излучающей сферы это ее центр — в него приходят все лучи. Однако если сферу немного возмутить — сжать в одном направлении и растянуть в другом, то каустика превращается из точки в очень интересную поверхность, о которой, в основном, и пойдет речь.
-
Владимир Тихомиров
Выпуклый анализ — раздел математики, в котором изучают выпуклые объекты: выпуклые множества, выпуклые функции и выпуклые экстремальные задачи. Таким образом, этот раздел имеет пересечения с геометрией (выпуклость — геометрическое понятие), анализом (функция — одно из основных понятий анализа) и теорией экстремума. Основная часть этой лекции будет посвящена двуединству геометрического и алгебро-аналитического подходов к понятию выпуклости.
-
Георгий Шабат
Программа курса: История. Первые оценки. Проблема соизмеримости длины окружности с ее диаметром. Бесконечные ряды, произведения и другие выражения для π. Сходимость и ее качество. Выражения, содержащие π. Последовательности, быстро сходящиеся к π. Современные методы вычисления π, использование компьютеров. Об иррациональности и трансцендентности π и некоторых других чисел. Предварительных знаний для понимания курса не требуется.
-
Александр Кузнецов
Инварианты Громова–Виттена – это замечательный набор численных инвариантов алгебраического (и, более общо, симплектического) многообразия, обобщающих индексы пересечения когомологических классов. Они позволяют ввести на кольце когомологий новое, так называемое квантовое умножение, являющееся деформацией обычного умножения в когомологиях, и являются первым шагом к пониманию зеркальной симметрии – удивительного явления, открытого физиками в конце 80-х годов прошлого века. Для алгебраического многообразия инварианты Громова–Виттена определяются через теорию пересечений пространства модулей кривых в этом многообразии. Я постараюсь объяснить, что такое пространство модулей кривых и как с ним обращаться, какие возникают сложности с вычислением инвариантов Громова–Виттена и как их преодолевают.
Далее >>>
|
|