Выпуклый анализ — раздел математики, в котором изучают выпуклые объекты: выпуклые множества, выпуклые функции и выпуклые экстремальные задачи. Таким образом, этот раздел имеет пересечения с геометрией (выпуклость — геометрическое понятие), анализом (функция — одно из основных понятий анализа) и теорией экстремума. Основная часть этой лекции будет посвящена двуединству геометрического и алгебро-аналитического подходов к понятию выпуклости.
Однажды в Доме ученых мне удалось организовать диспут на тему «Развитие геометрии в двадцатом столетии». Естественно возник вопрос: а что такое геометрия? Что произошло с геометрией в прошлом веке? Геометрия ныне одна из многих? Кого из наших современников можно назвать великим геометром?
В докладе на примере геометрий Евклида и Лобачевского будет обсуждаться вопрос о том, что такое математическая истина и что означает «непротиворечивость геометрии». Будет рассказано об эволюции геометрических идей от Фалеса и Евклида до Пуанкаре и Гильберта, а также о специальной теории относительности Эйнштейна и об учебнике А. Н. Колмогорова по геометрии.
Что такое каустики, знает всякий, кто когда-либо выжигал по дереву, собирая солнечные лучи с помощью линзы, видел световые блики на дне неглубокого водоема от ряби на поверхности воды или наблюдал игру света, отражающегося от дна чашки. Латинское слово «каустик» означает «жгучий», и им называют множество тех точек в пространстве, в которых собирается больше лучей какого-либо светового потока, чем в соседних точках. Скажем, каустика равномерно излучающей сферы это ее центр — в него приходят все лучи. Однако если сферу немного возмутить — сжать в одном направлении и растянуть в другом, то каустика превращается из точки в очень интересную поверхность, о которой, в основном, и пойдет речь.
Автоморфизм n-мерного аффинного пространства — это отображение (x_1,…,x_n) → (f_1,…,f_n), где f_i — многочлены от переменных x_1,…,x_n, для которого существует обратное отображение, также заданное многочленами. Мы начнем с полного описания автоморфизмов прямой, проблему якобиана. Определим ручные и дикие автоморфизмы, докажем, что все автоморфизмы плоскости являются ручными, и немного поговорим о доказательстве теоремы Шестакова и Умирбаева (2004) о том, что автоморфизм Нагаты трехмерного пространства (1972) является диким. Также мы обсудим свойство бесконечной транзитивности действия группы автоморфизмов и его связь с локально нильпотентными дифференцированиями. Будет сформулирован ряд известных открытых проблем аффинной алгебраической геометрии: проблема сокращения, проблема выпрямления, проблема линеаризации для торов и ее связь с градуировками.
Лекции читает Аносов Дмитрий Викторович, доктор физико-математических наук, профессор, академик РАН. Летняя школа «Современная математика», г. Дубна. 16-18 июля 2002 г.
Программа курса: История. Первые оценки. Проблема соизмеримости длины окружности с ее диаметром. Бесконечные ряды, произведения и другие выражения для π. Сходимость и ее качество. Выражения, содержащие π. Последовательности, быстро сходящиеся к π. Современные методы вычисления π, использование компьютеров. Об иррациональности и трансцендентности π и некоторых других чисел. Предварительных знаний для понимания курса не требуется.
В своей статье «Что такое математика» В. И. Арнольд писал: «Является ли математика перечислением следствий из произвольных аксиом или же ветвью естествознаия и теоретической физики, много обсуждался уже со времен Гильберта (придерживавшегося вслед за Декартом и, предвосхищая Бурбаки, первого мнения) и Пуанкаре (основателя современной математики, топологии, теории хаоса в динамических системах).» В лекции будет обсуждаться вопрос Арнольда, а заодно будет рассказано о самом Арнольде, а также о Николя Бурбаки, Давиде Гильберте, Рене Декарте и Анри Пуанкаре. И об их вкладе в науку.
В лекции будет освещена основная концепция Ньютона, согласно которой законы природы описываются на языке математического анализа (по преимуществу, на языке дифференциальных уравнений). Будет рассказано о математическом описании законов Архимеда, Галилея, Кеплера, Ферма, Гука, о началах математической физики в трудах Н. Бернулли, Эйлера, Лапласа и Фурье, о формуле сложения скоростей Эйнштейна и об уравнении Шрёдингера.
Энтропия — мера неопределённости, мера хаоса. В естественных науках это мера беспорядка системы, состоящей из многих элементов; в теории информации — мера неопределённости какого-либо опыта, процесса или испытания, которые могут иметь разные исходы (а значит, мера количества информации); в математике — мера сложности объекта или процесса. Понятие энтропии было впервые введено в 1865 году Р. Клаузиусом в термодинамике, К. Шенноном в теории информации в 1949 г., в теории стохастичпеских процессов Колмогоровым, Гельфандом и Яглом в 1956 г., в функциональном анализе и теории динамических систем Колмогоровым в 1956–1958 гг. Между мирами полной детерминированности, изучаемой классическим анализом и миром хаоса, изучаемым теорией вероятностей, ныне перекидывается мост, который связан с понятием энтропии.
Истоки тригонометрии. Идеи подобия. Параллакс. Основные тригонометрические функции. Единичная окружность как сердцевина тригонометрии. О широком распространении гармонических колебаний. Обзор основных формул. Обратные тригонометрические функции. Чем плохи обратные функции вообще. Почему обратные тригонометрические ещё хуже.