Идеи подобия. Параллакс. Основные тригонометрические функции. Единичная окружность как сердцевина тригонометрии. О широком распространении гармонических колебаний.
2. Жонглирование в тригонометрии
Обзор основных формул. В чём плюсы, если формулы лежат в памяти. Механизмы поиска.
3. Обратные тригонометрические функции
Определения, особенности. Чем плохи обратные функции вообще. Почему обратные тригонометрические ещё хуже.
Опойцев Валерий Иванович, доктор физико-математических наук, профессор МФТИ, гл. н. с. ИПУ РАН.
Числа и арифметика. Что такое функция. Способы задания. Характерные особенности. Линейная функция. Принципы суперпозиции, на которых стоит вся физика. Квадратные уравнения. Теорема Виета. Ряд Фибоначчи. Корни из отрицательных чисел. Квадратный многочлен. Неравенство Коши — Буняковского. Деление многочленов и теорема Безу. Показательная функция. Вычислительный алгоритм для извлечения корней. Экспоненциальный рост. Десять в сотой — накрывает всю Вселенную. Логарифмы. Закон Вебера — Фехнера. Децибелы. Дифференциальные уравнения.
Если кто-то думает, что мы учимся строить графики, — то это для нас не главное. Мы рассчитываем на побочные результаты. Графики с модулями. Но это лишь повод. А речь об умении вообще строить графики, иметь дело с различными функциями и логически мыслить. На проделанную работу важно смотреть не как на ассортимент опробованных графиков, а как на совокупность методов и приёмов построения графиков, которые годятся совсем в других обстоятельствах. Стиль и логика мышления — вот что главное.
Речь о теореме Брауэра и её обобщениях. В поле зрения теорема о еже, фиксирующая невозможность причесать сферу без макушки. Эффективность инструмента (степень отображения, вращение векторного поля) иллюстрируется также на задачах о единственности решения и о количестве решений.
Тематику дифференциальных уравнений, безусловно, надо расширять, иначе «молодые побеги» — хаос, аттракторы, солитоны — будут расти сквозь асфальт. С другой стороны, базовые курсы нуждаются в резком сокращении, поскольку для самих дифуров не так много места остается в этой жизни. Из-за информационного переполнения. При этом стандартных мер недостает. Единственное средство — тривиализация дисциплины. Математика, как и человек, — иногда надувает щеки, наряжается и творит мифы. Поэтому в дифурах немало лишнего, вычурного, случайного — и одно лишь наведение порядка высвобождает массу свободного места. Данный мини-курс адресован «всем», поскольку преподносит некую общую часть. Не простую и не сложную, но дающую представление об основах и позволяющую при необходимости быстро войти в предмет и двигаться дальше.
Матанализ традиционно включает в себя дифференциальное и интегральное исчисление. С теми или иными отступлениями и дополнениями. Вплоть до премудростей функционального анализа. Но в любом случае всё начинается с первой ступени: последовательности и пределы; производная, свойства, производные элементарных функций; неопределённый и определённый интеграл. Сюда можно добавить двойные, тройные и криволинейные интегралы, частные производные, простейшие дифференциальные уравнения. Это тот минимум, с которого начинается высшее математическое образование. Независимо от того, занимаетесь ли вы самообразованием, учитесь в школе или двигаетесь по университетской колее.
Эссе Пола Локхарда «Плач математика» о преподавании математики в средней школе. Хотя в сочинении говорится об американской современной средней школе, многие проблемы, идентифицируемые Локхардом, относятся к любой стране мира, за исключением, возможно, Эльдорадо, которой нет. Еще менее привязаны к американской реальности размышления автора о том, что такое математика и как она должна преподаваться. Даже если вы не математик и не имеете отношения к преподаванию, думаю, вы найдете это эссе интересным, а возможно, и сделаете для себя несколько небольших открытий и сломаете кое-какие стереотипы. В конце концов, вы ведь учили математику в школе!
Комплексные числа: Как возникают и что обеспечивают. Как введение «странных» объектов проливает свет на реальные проблемы. Теория вещественных чисел: Пополнение прямой. Сечения Дедекинда. Зачем это нужно. Системы счисления: Что говорил Плутарх. Позиционная запись чисел. Десятичная система, двоичная. Игра «Ним» на шахматной доске. Двоичный выигрывающий алгоритм. Множества и операции: Наивная теория множеств. Сходство и различия с арифметическими операциями. Булевы структуры. Какими моделями их можно наполнять. Как эти модели перекликаются. Математическая индукция: Аксиома Пеано. Механизм индукции. Примеры.
Знаете ли вы, почему в окружности 360 градусов, а не 180 или, скажем, не 300? Откуда пошла традиция делить окружность на равные части и почему было выбрано именно такое их число? Оказывается, этому делению мы обязаны вавилонянам. Считается, что они же изобрели простейший инструмент для измерения углов − транспортир. Но вот вопрос: как же древние сумели разделить окружность на равные части, не владея техникой геометрических построений и располагая лишь примитивными инструментами?
Что такое каустики, знает всякий, кто когда-либо выжигал по дереву, собирая солнечные лучи с помощью линзы, видел световые блики на дне неглубокого водоема от ряби на поверхности воды или наблюдал игру света, отражающегося от дна чашки. Латинское слово «каустик» означает «жгучий», и им называют множество тех точек в пространстве, в которых собирается больше лучей какого-либо светового потока, чем в соседних точках. Скажем, каустика равномерно излучающей сферы это ее центр — в него приходят все лучи. Однако если сферу немного возмутить — сжать в одном направлении и растянуть в другом, то каустика превращается из точки в очень интересную поверхность, о которой, в основном, и пойдет речь.
Автоморфизм n-мерного аффинного пространства — это отображение (x_1,…,x_n) → (f_1,…,f_n), где f_i — многочлены от переменных x_1,…,x_n, для которого существует обратное отображение, также заданное многочленами. Мы начнем с полного описания автоморфизмов прямой, проблему якобиана. Определим ручные и дикие автоморфизмы, докажем, что все автоморфизмы плоскости являются ручными, и немного поговорим о доказательстве теоремы Шестакова и Умирбаева (2004) о том, что автоморфизм Нагаты трехмерного пространства (1972) является диким. Также мы обсудим свойство бесконечной транзитивности действия группы автоморфизмов и его связь с локально нильпотентными дифференцированиями. Будет сформулирован ряд известных открытых проблем аффинной алгебраической геометрии: проблема сокращения, проблема выпрямления, проблема линеаризации для торов и ее связь с градуировками.