1. Вращение векторного поля, или степень отображения
Когда теория взмывает ввысь, уходя от конкретики, но тем не менее, добивается результата, — она вдохновляет и настраивает «далеко за пределами». Эффект многократно усиливается, если по ходу дела сложное и простое сливаются воедино, а потом меняются местами.
2. Инструмент деформаций
Невырожденная деформация, или гомотопия, не меняет вращения векторного поля — и это служит главным инструментом перехода от изучаемых отображений к более простым, вращение которых известно. Что в конечном итоге приводит к теоремам о разрешимости систем уравнений.
3. Разрешимость, единственность, количество решений
Речь о теореме Брауэра и её обобщениях. В поле зрения теорема о еже, фиксирующая невозможность причесать сферу без макушки. Эффективность инструмента (степень отображения, вращение векторного поля) иллюстрируется также на задачах о единственности решения и о количестве решений.
Опойцев Валерий Иванович, доктор физико-математических наук, профессор МФТИ, гл. н. с. ИПУ РАН.
Теория функций и функциональный анализ – уникальная дисциплина второго круга математического образования, осваивая которую человек вдруг понимает, что ещё вчера за деревьями леса не видел. Это другой этаж мышления, виденья, понимания. Чтобы днём увидеть звёзды, надо опуститься в глубокий колодец. В основе изложения лежит стандартный скелет: метрические, нормированные и топологические пространства; теория меры, интеграл Лебега; компактные и предкомпактные множества; линейные операторы в банаховых и гильбертовых пространствах; спектральная теория; обобщённые функции; элементы нелинейного анализа.
Рассмотрим задачу о полиномах, наименее уклоняющиеся от нуля. Требуется найти полином Pn(x) степени n со старшим коэффициентом 1, такой что величина max_{x∈[−1,1]}|Pn(x)| принимает наименьшее возможное значение. Эту задачу решил Чебышёв, доказавший, что искомые полиномы — последовательность полиномов Чебышева, который являются классическим примером семейства ортогональных полиномов.
Вариационное исчисление — наука о поиске минимума функции в бесконечномерном пространстве. В отличие от привычных нам задач на минимум, когда нужно оптимальным образом выбрать число (параметр), или, скажем, точку на плоскости, в вариационных задачах требуется найти оптимальную функцию. При этом, одним и тем же набором средств решаются задачи самого разного происхождения: из классической механики, геометрии, математической экономики и т.д. Мы начнем со старых задач, известных с XVII века, и, перекидывая мостки от одной задачи к другой, быстро доберемся до современных результатов и нерешенных проблем.
Тематику дифференциальных уравнений, безусловно, надо расширять, иначе «молодые побеги» — хаос, аттракторы, солитоны — будут расти сквозь асфальт. С другой стороны, базовые курсы нуждаются в резком сокращении, поскольку для самих дифуров не так много места остается в этой жизни. Из-за информационного переполнения. При этом стандартных мер недостает. Единственное средство — тривиализация дисциплины. Математика, как и человек, — иногда надувает щеки, наряжается и творит мифы. Поэтому в дифурах немало лишнего, вычурного, случайного — и одно лишь наведение порядка высвобождает массу свободного места. Данный мини-курс адресован «всем», поскольку преподносит некую общую часть. Не простую и не сложную, но дающую представление об основах и позволяющую при необходимости быстро войти в предмет и двигаться дальше.
Истоки тригонометрии. Идеи подобия. Параллакс. Основные тригонометрические функции. Единичная окружность как сердцевина тригонометрии. О широком распространении гармонических колебаний. Обзор основных формул. Обратные тригонометрические функции. Чем плохи обратные функции вообще. Почему обратные тригонометрические ещё хуже.
Матанализ традиционно включает в себя дифференциальное и интегральное исчисление. С теми или иными отступлениями и дополнениями. Вплоть до премудростей функционального анализа. Но в любом случае всё начинается с первой ступени: последовательности и пределы; производная, свойства, производные элементарных функций; неопределённый и определённый интеграл. Сюда можно добавить двойные, тройные и криволинейные интегралы, частные производные, простейшие дифференциальные уравнения. Это тот минимум, с которого начинается высшее математическое образование. Независимо от того, занимаетесь ли вы самообразованием, учитесь в школе или двигаетесь по университетской колее.
Комплексные числа: Как возникают и что обеспечивают. Как введение «странных» объектов проливает свет на реальные проблемы. Теория вещественных чисел: Пополнение прямой. Сечения Дедекинда. Зачем это нужно. Системы счисления: Что говорил Плутарх. Позиционная запись чисел. Десятичная система, двоичная. Игра «Ним» на шахматной доске. Двоичный выигрывающий алгоритм. Множества и операции: Наивная теория множеств. Сходство и различия с арифметическими операциями. Булевы структуры. Какими моделями их можно наполнять. Как эти модели перекликаются. Математическая индукция: Аксиома Пеано. Механизм индукции. Примеры.
Что характеризует «квантовую», или «некоммутативную», математику, которая на самом деле родилась вместе с квантовой механикой, но никто этого не заметил? Каким образом квантовая математика пыталась помирить двух великих физиков, да не смогла? О том, почему «настоящая» теорема отвечает не только на поставленный вопрос, но и на ряд еще не поставленных, — доктор физико-математических наук, профессор МГУ Александр Яковлевич Хелемский.
Будет рассказано о понятии, которое все используют, но обычно рассказывают по ходу дела — метрическом пространстве. Будет разобрано много красивых примеров, рассказано о фактах и методах применяемых повсюду: от дифференциальных уравнений до теории кодирования — пополнении, принципе сжимающих отображений, теореме Бэра.
Мы обсудим понятие, которое все используют, но о котором обычно рассказывают по ходу дела — о метрическом пространстве. Постараемся разобрать красивые примеры, обсудить факты и методы применяемые повсюду: от дифференциальных уравнений до теории кодирования и стеганографии — пополнении, принципе сжимающих отображений, теореме Бэра, компактности, теореме Вейерштрасса…