Однажды в Доме ученых мне удалось организовать диспут на тему «Развитие геометрии в двадцатом столетии». Естественно возник вопрос: а что такое геометрия? Что произошло с геометрией в прошлом веке? Геометрия ныне одна из многих? Кого из наших современников можно назвать великим геометром?
Выпуклый анализ — раздел математики, в котором изучают выпуклые объекты: выпуклые множества, выпуклые функции и выпуклые экстремальные задачи. Таким образом, этот раздел имеет пересечения с геометрией (выпуклость — геометрическое понятие), анализом (функция — одно из основных понятий анализа) и теорией экстремума. Основная часть этой лекции будет посвящена двуединству геометрического и алгебро-аналитического подходов к понятию выпуклости.
В докладе на примере геометрий Евклида и Лобачевского будет обсуждаться вопрос о том, что такое математическая истина и что означает «непротиворечивость геометрии». Будет рассказано об эволюции геометрических идей от Фалеса и Евклида до Пуанкаре и Гильберта, а также о специальной теории относительности Эйнштейна и об учебнике А. Н. Колмогорова по геометрии.
Научная биография Карла Вейерштрасса, его основные работы, влияние его учения на развитие математики. Вейерштрасс и теория вещественного числа, зарождение общей топологии, начала математического анализа, комплексный анализ, теория эллиптических функций, теория чисел, вариационное исчисление. Размышления Вейерштрасса о математике и математической жизни.
Программа курса: История. Первые оценки. Проблема соизмеримости длины окружности с ее диаметром. Бесконечные ряды, произведения и другие выражения для π. Сходимость и ее качество. Выражения, содержащие π. Последовательности, быстро сходящиеся к π. Современные методы вычисления π, использование компьютеров. Об иррациональности и трансцендентности π и некоторых других чисел. Предварительных знаний для понимания курса не требуется.
В своей статье «Что такое математика» В. И. Арнольд писал: «Является ли математика перечислением следствий из произвольных аксиом или же ветвью естествознаия и теоретической физики, много обсуждался уже со времен Гильберта (придерживавшегося вслед за Декартом и, предвосхищая Бурбаки, первого мнения) и Пуанкаре (основателя современной математики, топологии, теории хаоса в динамических системах).» В лекции будет обсуждаться вопрос Арнольда, а заодно будет рассказано о самом Арнольде, а также о Николя Бурбаки, Давиде Гильберте, Рене Декарте и Анри Пуанкаре. И об их вкладе в науку.
В лекции будет освещена основная концепция Ньютона, согласно которой законы природы описываются на языке математического анализа (по преимуществу, на языке дифференциальных уравнений). Будет рассказано о математическом описании законов Архимеда, Галилея, Кеплера, Ферма, Гука, о началах математической физики в трудах Н. Бернулли, Эйлера, Лапласа и Фурье, о формуле сложения скоростей Эйнштейна и об уравнении Шрёдингера.
Энтропия — мера неопределённости, мера хаоса. В естественных науках это мера беспорядка системы, состоящей из многих элементов; в теории информации — мера неопределённости какого-либо опыта, процесса или испытания, которые могут иметь разные исходы (а значит, мера количества информации); в математике — мера сложности объекта или процесса. Понятие энтропии было впервые введено в 1865 году Р. Клаузиусом в термодинамике, К. Шенноном в теории информации в 1949 г., в теории стохастичпеских процессов Колмогоровым, Гельфандом и Яглом в 1956 г., в функциональном анализе и теории динамических систем Колмогоровым в 1956–1958 гг. Между мирами полной детерминированности, изучаемой классическим анализом и миром хаоса, изучаемым теорией вероятностей, ныне перекидывается мост, который связан с понятием энтропии.
Параллельные прямые не пересекаются даже в геометрии Лобачевского. Где-то в фильмах часто можно встретить фразу: «А у нашего Лобачевского параллельные прямые пересеклись». Звучит красиво, но не соответствует действительности. Николай Иванович Лобачевский действительно придумал необыкновенную геометрию, в которой параллельные прямые ведут себя совсем не так, как мы привыкли. Но все же не пересекаются. Математик Валентина Кириченко о постулатах геометрии Евклида, аксиоме Лобачевского и критике Льюиса Кэрролла.
Большинство современных изложений неевклидовой геометрии (под этим термином обычно понимают геометрию Лобачевского), начинаются с построения той или иной модели этой геометрии, на основании которой уже выводят различные формулы и доказывают теоремы. Между тем, исторически дело происходило с точностью до наоборот: лишь доказав огромное количество странных и удивительных теорем, математики приступили к построению моделей, в которых эти теоремы выполнялись бы. Можно сказать, что именно существование (точнее, доказательство) такого большого количества удивительных фактов привело к пониманию необходимости построения моделей, что, в свою очередь поменяло навсегда не только наше представление о том, что такое геометрия, но и вызвало к жизни новые взгляды на предмет изучения всей математики. Поскольку я считаю, что, как и в биологии, в математике онтогенез повторяет филогенез, то и свою лекцию я посвящаю краткому изложению истории этого «филогенеза», что, я надеюсь будет полезно слушателям.
Правдива ли евклидова геометрия? Верно ли она описывает пространство, в котором мы живем? Что значит истинность геометрии? Гаусс был одержимый идеей эмпирической верификации теорем евклидовой геометрии, и даже сам лично принял участие в проверке теоремы о равенстве π суммы внутренних углов треугольника. В этом направлении долгое время Гаусс работал один, продолжая начатую задолго до него критическую линию по пересмотру евклидовой геометрии. Но вот в 1830-е годы появились две важные работы, которые он с энтузиазмом поддержал. Это были работа русского математика, ректора Казанского университета Николая Лобачевского и работа венгра Яноша Бойяи.