Неевклидова геометрия
Правдива ли евклидова геометрия? Верно ли она описывает пространство, в котором мы живем? Что значит истинность геометрии?
Гаусса можно причислить к основоположникам релятивизма, который сказал: хотите узнать правду о геометрии, обратитесь к опыту. Он оставил Канту лишь арифметику, которую он, как и философ, считал во многом наукой априорной и интеллигибельной. Геометрию же, тем более, механику он причислил к эмпирическим и практическим наукам, в которых теоретическая доля покоится на том, что поставляет нам опыт.
Гаусс был одержимый идеей эмпирической верификации теорем евклидовой геометрии, и даже сам лично принял участие в проверке теоремы о равенстве π суммы внутренних углов треугольника. Еще в 1821 г. он решил проверить на опыте, действительно ли трехмерное пространство, в котором мы живем, является евклидовым. С этой целью он с помощью геодезических приборов замерил углы треугольника с вершинами, расположенными на холмах Брокен, Хохехаген и Инзельберг. Наибольшая сторона треугольника имела длину около 100 км.
В этом направлении долгое время Гаусс работал один, продолжая начатую задолго до него критическую линию по пересмотру евклидовой геометрии. Но вот в 1830-е годы появились две важные работы, которые он с энтузиазмом поддержал. Это были работа русского математика, ректора Казанского университета (в период 1827-1847 гг.) Николая Ивановича Лобачевского (1792-1856) и работа венгра Яноша Бойяи (1802-1860) — офицера австро-венгерской армии, сына известного математика Фаркаша Бойяи, который был близким другом Гаусса.
Похожее
-
Документальный фильм режиссера Е. Гордиенко по сценарию А. Липкова «Николай Лобачевский» из цикла «Великие имена России» рассказывает о жизни и творчестве великого русского ученого Н.И. Лобачевского (1792–1856), работы которого положили начало новому направлению в математике — неевклидовой геометрии. Гостелерадио СССР, 1983 г.
-
Валентина Кириченко
Параллельные прямые не пересекаются даже в геометрии Лобачевского. Где-то в фильмах часто можно встретить фразу: «А у нашего Лобачевского параллельные прямые пересеклись». Звучит красиво, но не соответствует действительности. Николай Иванович Лобачевский действительно придумал необыкновенную геометрию, в которой параллельные прямые ведут себя совсем не так, как мы привыкли. Но все же не пересекаются. Математик Валентина Кириченко о постулатах геометрии Евклида, аксиоме Лобачевского и критике Льюиса Кэрролла.
-
Георгий Шарыгин
Большинство современных изложений неевклидовой геометрии (под этим термином обычно понимают геометрию Лобачевского), начинаются с построения той или иной модели этой геометрии, на основании которой уже выводят различные формулы и доказывают теоремы. Между тем, исторически дело происходило с точностью до наоборот: лишь доказав огромное количество странных и удивительных теорем, математики приступили к построению моделей, в которых эти теоремы выполнялись бы. Можно сказать, что именно существование (точнее, доказательство) такого большого количества удивительных фактов привело к пониманию необходимости построения моделей, что, в свою очередь поменяло навсегда не только наше представление о том, что такое геометрия, но и вызвало к жизни новые взгляды на предмет изучения всей математики. Поскольку я считаю, что, как и в биологии, в математике онтогенез повторяет филогенез, то и свою лекцию я посвящаю краткому изложению истории этого «филогенеза», что, я надеюсь будет полезно слушателям.
-
Сергей Нечаев
Математик Сергей Нечаев о визуализации неевклидовой геометрии в рисунках Эшера, устройстве цепной дроби и правиле неравенства треугольника.
-
Алексей Савватеев
Геометрия — классическая Евклидова, Лобачевского, проективная и сферическая — не получает достаточного внимания в программах современных мат.факультетов (не говоря уже о школах). В то же время она наглядна и на редкость красива. Многие утверждения визуально очевидны и в то же время неожиданные (почему самолёт, летящий из Иркутска в Лиссабон, стартует сперва в направлении Норильска?) За 8 лекций слушатели ознакомятся с начальными сведениями в этой области математики, берущей своё начало более двух тысячелетий назад. Закончим мы гораздо более сложным материалом, непосредственно выводящим на современные разделы науки. Будут затронуты основы теории групп и алгебр Ли.
-
Жак Сезиано
За два тысячелетия произошло три важных расширения числовой области. Во-первых, около 450 г. до н.э. учёные школы Пифагора доказали существование иррациональных чисел. Их начальной целью было числовое выражение диагонали единичного квадрата. Во-вторых, в XIII-XV веках европейские учёные, решая системы линейных уравнений, допустили возможность одного отрицательного решения. И, в-третьих, в 1572 г. итальянский алгебраист Рафаэль Бомбелли использовал комплексные числа для получения действительного решения некоего кубического уравнения.
-
Галина Синкевич
Труды Кантора в России начали переводить и пересказывать с 1892 года в Одессе, Москве, Томске, Казани, Петрограде. Идеи теории множеств были с энтузиазмом восприняты в России как математиками, так и философами, в их популяризации приняли участие такие известные учёные, как И.Ю. Тимченко, С.О. Шатуновский, А.В. Васильев, П.А. Флоренский, Б.К. Млодзеевский, В.Л. Некрасов, И.И. Жегалкин, П.С. Юшкевич-отец, А.И. Фет, А.П. Юшкевич-сын, А.Н. Колмогоров, Ф.А. Медведев. В Москве в 1911 году возникла школа теории функций и дескриптивной теории множеств. В 1970 году академик Понтрягин оценил теорию множеств как ненужную для молодых математиков, и подготовленный перевод трудов Кантора не вышел в свет. Мы впервые расскажем о трагической судьбе этого перевода.
-
В середине XIX века были сделаны открытия, которые в корне изменили алгебру и привели к ее окончательному отделению от арифметики. История открытия алгебры кватернионов и булевой алгебры.
-
Владлен Тиморин
Математик Владлен Тиморин о преимуществах комплексных чисел, кватернионах Гамильтона, восьмимерных числах Кэли и о разнообразии чисел в геометрии.
-
ВВС
Математика — универсальный язык Вселенной, фундамент, на котором основаны все другие науки. Как человечество смогло открыть тайны этого универсального языка? Начиная с древнейших времен, прослеживается история математики до наших дней и завершается рассказом о наиболее важных проблемах современности. Их решение позволит лучше понять устройство нашего мира.
Далее >>>
|
|