Галина Ивановна Синкевич, кандидат физико-математических наук, доцент СПбГАСУ.
О математическом творчестве Карла Вейерштрасса
Вейерштрасс и теория вещественного числа, зарождение общей топологии, начала математического анализа, комплексный анализ, теория эллиптических функций, теория чисел, вариационное исчисление. Размышления Вейерштрасса о математике и математической жизни.
Тихомиров Владимир Михайлович, доктор физико-математических наук, профессор.
Семинар по истории математики
Санкт-Петербург, Дом учёных, белый зал, 1 декабря 2015 г.
Язык «ε–δ» возник в работах математиков XIX века. Хотя обозначения впервые ввёл Коши, эпсилонтика как метод сформировалась в лекциях Вейерштрасса. Больцано в 1817 и Коши в 1821 году дали определения предела в качественной форме и определения непрерывной функции на языке приращений; Коши в 1823 году применил ε и δ при улучшении доказательства Ампера теоремы о среднем, но Коши использовал ε и δ как конечные оценки погрешности, где δ не зависит от ε. Процесс осознания понятий непрерывности и равномерной непрерывности функции шёл сложным путём в работах Стокса, Зайделя, Римана, Дирихле, Раабе и многих других. В полной мере метод «эпсилон-дельта» проявился в определении предела только у Вейерштрасса в 1861 году. Легенда о принадлежности метода Огюстену Коши возникла в начале XX века в работе Лебега и затем многократно повторялась. Обращение к первоисточникам позволило исправить эту историческую ошибку.
Труды Кантора в России начали переводить и пересказывать с 1892 года в Одессе, Москве, Томске, Казани, Петрограде. Идеи теории множеств были с энтузиазмом восприняты в России как математиками, так и философами, в их популяризации приняли участие такие известные учёные, как И.Ю. Тимченко, С.О. Шатуновский, А.В. Васильев, П.А. Флоренский, Б.К. Млодзеевский, В.Л. Некрасов, И.И. Жегалкин, П.С. Юшкевич-отец, А.И. Фет, А.П. Юшкевич-сын, А.Н. Колмогоров, Ф.А. Медведев. В Москве в 1911 году возникла школа теории функций и дескриптивной теории множеств. В 1970 году академик Понтрягин оценил теорию множеств как ненужную для молодых математиков, и подготовленный перевод трудов Кантора не вышел в свет. Мы впервые расскажем о трагической судьбе этого перевода.
Теорему Ролля впервые доказал Вейерштрасс, а теорема Больцано–Коши была сформулирована Роллем за 127 лет до них. Производное уравнение умели составлять за 100 лет до появления дифференциального исчисления. Как же развивались эти идеи? Что же сделал Мишель Ролль, сын сапожника и академик?
Вариационное исчисление — наука о поиске минимума функции в бесконечномерном пространстве. В отличие от привычных нам задач на минимум, когда нужно оптимальным образом выбрать число (параметр), или, скажем, точку на плоскости, в вариационных задачах требуется найти оптимальную функцию. При этом, одним и тем же набором средств решаются задачи самого разного происхождения: из классической механики, геометрии, математической экономики и т.д. Мы начнем со старых задач, известных с XVII века, и, перекидывая мостки от одной задачи к другой, быстро доберемся до современных результатов и нерешенных проблем.
Курс посвящен римановым поверхностям, модулярным формам и некоторым их приложениям. Эти фундаментальные понятия, играющие важную роль в самых разных разделах математики, можно определить при помощи верхней полуплоскости – множества комплексных чисел с положительной мнимой частью, – которую мы будем рассматривать как модель Пуанкаре плоскости Лобачевского. Соответствующие определения будут даны в курсе.
Понятие числовой прямой сформировалось в конце XIX — начале XX веков. Мы рассмотрим этапы развития этого понятия в работах М. Штифеля (1544 г.), Галилея (1633 г.), Эйлера (1748 г.), Ламберта (1766 г.), Больцано (1830-е гг.), Мере (1869, 1872 гг.), Кантора (1872г.), Гейне (1872 г.), Дедекинда (1872 г.) и Вейерштрасса (с 1861 по 1885 гг).
Каким образом появились числа и как они повлияли на развитие человечества – эти вопросы в центре внимания 5-серийного проекта. В эпизодах, которые пронесут нас сквозь время и пространство, мы увидим, что математика играла важную роль в Древнем Египте и Греции, Индии, Средневековой Европе и продолжает играть сейчас в нашем современном мире.
Однажды в Доме ученых мне удалось организовать диспут на тему «Развитие геометрии в двадцатом столетии». Естественно возник вопрос: а что такое геометрия? Что произошло с геометрией в прошлом веке? Геометрия ныне одна из многих? Кого из наших современников можно назвать великим геометром?
В 1918 году Польша воссоединилась в единое государство, и в Варшаве, а после во Львове появились две сильные математические школы – теории множеств во главе с Вацлавом Серпинским и функционального анализа во главе со Стефаном Банахом. Об их возникновении и плодотворных результатах этот доклад.
В середине XIX века были сделаны открытия, которые в корне изменили алгебру и привели к ее окончательному отделению от арифметики. История открытия алгебры кватернионов и булевой алгебры.