В 1918 году Польша воссоединилась в единое государство, и в Варшаве, а после во Львове появились две сильные математические школы – теории множеств во главе с Вацлавом Серпинским и функционального анализа во главе со Стефаном Банахом. Об их возникновении и плодотворных результатах этот доклад.
Галина Ивановна Синкевич, кандидат физико-математических наук, доцент СПбГАСУ.
Семинар по истории математики
Санкт-Петербург, ПОМИ, Фонтанка 27, ауд. 106.
5 декабря 2013 г.
Труды Кантора в России начали переводить и пересказывать с 1892 года в Одессе, Москве, Томске, Казани, Петрограде. Идеи теории множеств были с энтузиазмом восприняты в России как математиками, так и философами, в их популяризации приняли участие такие известные учёные, как И.Ю. Тимченко, С.О. Шатуновский, А.В. Васильев, П.А. Флоренский, Б.К. Млодзеевский, В.Л. Некрасов, И.И. Жегалкин, П.С. Юшкевич-отец, А.И. Фет, А.П. Юшкевич-сын, А.Н. Колмогоров, Ф.А. Медведев. В Москве в 1911 году возникла школа теории функций и дескриптивной теории множеств. В 1970 году академик Понтрягин оценил теорию множеств как ненужную для молодых математиков, и подготовленный перевод трудов Кантора не вышел в свет. Мы впервые расскажем о трагической судьбе этого перевода.
Теорему Ролля впервые доказал Вейерштрасс, а теорема Больцано–Коши была сформулирована Роллем за 127 лет до них. Производное уравнение умели составлять за 100 лет до появления дифференциального исчисления. Как же развивались эти идеи? Что же сделал Мишель Ролль, сын сапожника и академик?
Язык «ε–δ» возник в работах математиков XIX века. Хотя обозначения впервые ввёл Коши, эпсилонтика как метод сформировалась в лекциях Вейерштрасса. Больцано в 1817 и Коши в 1821 году дали определения предела в качественной форме и определения непрерывной функции на языке приращений; Коши в 1823 году применил ε и δ при улучшении доказательства Ампера теоремы о среднем, но Коши использовал ε и δ как конечные оценки погрешности, где δ не зависит от ε. Процесс осознания понятий непрерывности и равномерной непрерывности функции шёл сложным путём в работах Стокса, Зайделя, Римана, Дирихле, Раабе и многих других. В полной мере метод «эпсилон-дельта» проявился в определении предела только у Вейерштрасса в 1861 году. Легенда о принадлежности метода Огюстену Коши возникла в начале XX века в работе Лебега и затем многократно повторялась. Обращение к первоисточникам позволило исправить эту историческую ошибку.
Научная биография Карла Вейерштрасса, его основные работы, влияние его учения на развитие математики. Вейерштрасс и теория вещественного числа, зарождение общей топологии, начала математического анализа, комплексный анализ, теория эллиптических функций, теория чисел, вариационное исчисление. Размышления Вейерштрасса о математике и математической жизни.
Корректно ответить на этот вопрос нельзя, поскольку числовой ряд не имеет верхнего предела. Так, к любому числу достаточно всего лишь прибавить единицу, чтобы получить число ещё большее. Хотя сами числа бесконечны, собственных названий у них не так уж и много, так как большинство из них довольствуются именами, составленными из чисел меньших. Понятно, что в конечном наборе чисел, которых человечество наградило собственным именем, должно быть какое-то наибольшее число. Но как оно называется и чему оно равно? Давайте же, попробуем в этом разобраться и заодно узнать, насколько большие числа придумали математики.
Математика — универсальный язык Вселенной, фундамент, на котором основаны все другие науки. Как человечество смогло открыть тайны этого универсального языка? Начиная с древнейших времен, прослеживается история математики до наших дней и завершается рассказом о наиболее важных проблемах современности. Их решение позволит лучше понять устройство нашего мира.
Понятие числовой прямой сформировалось в конце XIX — начале XX веков. Мы рассмотрим этапы развития этого понятия в работах М. Штифеля (1544 г.), Галилея (1633 г.), Эйлера (1748 г.), Ламберта (1766 г.), Больцано (1830-е гг.), Мере (1869, 1872 гг.), Кантора (1872г.), Гейне (1872 г.), Дедекинда (1872 г.) и Вейерштрасса (с 1861 по 1885 гг).
Речь о теореме Брауэра и её обобщениях. В поле зрения теорема о еже, фиксирующая невозможность причесать сферу без макушки. Эффективность инструмента (степень отображения, вращение векторного поля) иллюстрируется также на задачах о единственности решения и о количестве решений.
Теория функций и функциональный анализ – уникальная дисциплина второго круга математического образования, осваивая которую человек вдруг понимает, что ещё вчера за деревьями леса не видел. Это другой этаж мышления, виденья, понимания. Чтобы днём увидеть звёзды, надо опуститься в глубокий колодец. В основе изложения лежит стандартный скелет: метрические, нормированные и топологические пространства; теория меры, интеграл Лебега; компактные и предкомпактные множества; линейные операторы в банаховых и гильбертовых пространствах; спектральная теория; обобщённые функции; элементы нелинейного анализа.
Рассмотрим задачу о полиномах, наименее уклоняющиеся от нуля. Требуется найти полином Pn(x) степени n со старшим коэффициентом 1, такой что величина max_{x∈[−1,1]}|Pn(x)| принимает наименьшее возможное значение. Эту задачу решил Чебышёв, доказавший, что искомые полиномы — последовательность полиномов Чебышева, который являются классическим примером семейства ортогональных полиномов.