Теорему Ролля впервые доказал Вейерштрасс, а теорема Больцано–Коши была сформулирована Роллем за 127 лет до них. Производное уравнение умели составлять за 100 лет до появления дифференциального исчисления. Как же развивались эти идеи? Что же сделал Мишель Ролль, сын сапожника и академик?
Галина Ивановна Синкевич, кандидат физико-математических наук, доцент СПбГАСУ.
Семинар по истории математики
Санкт-Петербург, ПОМИ, Фонтанка 27, ауд. 106.
3 октября 2013 г.
Труды Кантора в России начали переводить и пересказывать с 1892 года в Одессе, Москве, Томске, Казани, Петрограде. Идеи теории множеств были с энтузиазмом восприняты в России как математиками, так и философами, в их популяризации приняли участие такие известные учёные, как И.Ю. Тимченко, С.О. Шатуновский, А.В. Васильев, П.А. Флоренский, Б.К. Млодзеевский, В.Л. Некрасов, И.И. Жегалкин, П.С. Юшкевич-отец, А.И. Фет, А.П. Юшкевич-сын, А.Н. Колмогоров, Ф.А. Медведев. В Москве в 1911 году возникла школа теории функций и дескриптивной теории множеств. В 1970 году академик Понтрягин оценил теорию множеств как ненужную для молодых математиков, и подготовленный перевод трудов Кантора не вышел в свет. Мы впервые расскажем о трагической судьбе этого перевода.
Язык «ε–δ» возник в работах математиков XIX века. Хотя обозначения впервые ввёл Коши, эпсилонтика как метод сформировалась в лекциях Вейерштрасса. Больцано в 1817 и Коши в 1821 году дали определения предела в качественной форме и определения непрерывной функции на языке приращений; Коши в 1823 году применил ε и δ при улучшении доказательства Ампера теоремы о среднем, но Коши использовал ε и δ как конечные оценки погрешности, где δ не зависит от ε. Процесс осознания понятий непрерывности и равномерной непрерывности функции шёл сложным путём в работах Стокса, Зайделя, Римана, Дирихле, Раабе и многих других. В полной мере метод «эпсилон-дельта» проявился в определении предела только у Вейерштрасса в 1861 году. Легенда о принадлежности метода Огюстену Коши возникла в начале XX века в работе Лебега и затем многократно повторялась. Обращение к первоисточникам позволило исправить эту историческую ошибку.
Научная биография Карла Вейерштрасса, его основные работы, влияние его учения на развитие математики. Вейерштрасс и теория вещественного числа, зарождение общей топологии, начала математического анализа, комплексный анализ, теория эллиптических функций, теория чисел, вариационное исчисление. Размышления Вейерштрасса о математике и математической жизни.
Понятие числовой прямой сформировалось в конце XIX — начале XX веков. Мы рассмотрим этапы развития этого понятия в работах М. Штифеля (1544 г.), Галилея (1633 г.), Эйлера (1748 г.), Ламберта (1766 г.), Больцано (1830-е гг.), Мере (1869, 1872 гг.), Кантора (1872г.), Гейне (1872 г.), Дедекинда (1872 г.) и Вейерштрасса (с 1861 по 1885 гг).
В 1918 году Польша воссоединилась в единое государство, и в Варшаве, а после во Львове появились две сильные математические школы – теории множеств во главе с Вацлавом Серпинским и функционального анализа во главе со Стефаном Банахом. Об их возникновении и плодотворных результатах этот доклад.
Планируется обсуждения процесса эволюции от принципа исчерпывания через понятие актуального бесконечно малого количества к нестандартному анализу А. Робинсона и его современных модернизациях. Основное внимание будет уделено обоснованию понятия вещественного числа, моделированию свойств вещественных чисел в теории гиперрациональных чисел, связи этого с понятием конструктивного вещественного числа и компьютерными вычислениями.
Астроном и историк науки Матье Оссендрайвер (Mathieu Ossendrijver) из Берлинского университета имени Гумбольдта обнаружил на ранее не изученных вавилонских клинописных табличках, датированных 350 — 50 годами до н.э., описание нетривиального геометрического метода вычисления положения Юпитера. В нем использованы концепции, впервые появившиеся в современной науке лишь в середине XIV века, а затем ставшие краеугольным камнем математического анализа.
Университетский учебник в двух томах для студентов физико-математических специальностей. Может быть полезен студентам факультетов и вузов с расширенной математической подготовкой, а также специалистам в области математики и ее приложений. В книге отражена связь курса классического анализа с современными математическими курсами (алгебры, дифференциальной геометрии, дифференциальных уравнений, комплексного и функционального анализа).
Любой сигнал, будь то звук, изображение или другая функция, никогда не хранится в компьютере по точкам. Это дорого и неэффективно. Сигнал раскладывается в сумму других, «базовых» функций, и хранятся коэффициенты разложения. Главный вопрос — какую систему базовых функций использовать? И как построить хорошую систему, чтобы сигнал быстро и качественно воспроизводился и при этом занимал мало памяти? За это отвечает мощная и красивая математическая теория. В течение десятилетий базовыми функциями были синус и косинус, что естественно, учитывая природу звука. Это — ряды Фурье, изобретенные более 200 лет назад. Однако, к середине XX века стало ясно, что они не отвечают современным запросам.
Каким образом фотография с разрешением 8 Мп может поместиться в файл размером 2 Мб? Современные программы позволяют сжать изображение не только в 4, но и в 20–30, а иногда и в 100 раз без существенной потери качества. То же происходит со звуковыми файлами при записи музыки, с объёмными изображениями в компьютерной томографии и т.д. За всем этим стоит мощная и достаточно красивая математическая теория. В течение многих лет алгоритмы сжатия и передачи информации строились на основе разложения функций в ряды Фурье — в суммы по системе синусов и косинусов. Главным инструментом было быстрое преобразование Фурье — комбинаторный алгоритм для вычисления коэффициентов разложения. В конце 20 века стало ясно, что ряды Фурье, изобретенные более 200 лет назад, уже не отвечают современным запросам.