x, y, z

Математический анализ

Владимир Зорич

Комментарии: 0
Зорич В. А. Математический анализ. В 2-х частях.

Зорич В. А. Математический анализ. Часть I. – Изд. 4-е, испр. – М.: МЦНМО, 2002. – XVI + 664 с.

Зорич В. А. Математический анализ. Часть II. – Изд. 4-е, испр. – М.: МЦНМО, 2002. – XIV + 794 с.

Университетский учебник в двух томах для студентов физико-математических специальностей. Может быть полезен студентам факультетов и вузов с расширенной математической подготовкой, а также специалистам в области математики и ее приложений.

В книге отражена связь курса классического анализа с современными математическими курсами (алгебры, дифференциальной геометрии, дифференциальных уравнений, комплексного и функционального анализа).

Основные разделы первой части: введение в анализ (логическая символика, множество, функция, вещественное число, предел, непрерывность); дифференциальное и интегральное исчисление функции одной переменной; дифференциальное исчисление функций многих переменных.

Во вторую часть учебника включены следующие разделы: Многомерный интеграл. Дифференциальные формы и их интегрирование. Ряды и интегралы, зависящие от параметра (в том числе ряды и преобразования Фурье, а также асимптотические разложения).

Скачать:

Часть I: (pdf 15,6 MB), (djvu 5,8 MB)

Часть II: (pdf 25,8 MB), (djvu 7,3 MB)


Содержание

Часть I

  • Глава I. Некоторые общематематические понятия и обозначения
    • § 1. Логическая символика
      • 1. Связки и скобки.
      • 2. Замечания о доказательствах.
      • 3. Некоторые специальные обозначения.
      • 4. Заключительные замечания.
    • § 2. Множество и элементарные операции над множествами
      • 1. Понятие множества.
      • 2. Отношение включения.
      • 3. Простейшие операции над множествами.
    • § 3. Функция
      • 1. Понятие функции (отображения).
      • 2. Простейшая классификация отображений.
      • 3. Композиция функций взаимно обратные отображения.
      • 4. Функция как отношение. График функции.
    • § 4. Некоторые дополнения
      • 1. Мощность множества (кардинальные числа).
      • 2. Об аксиоматике теории множеств.
      • 3. Замечания о структуре математических высказываний и записи их на языке теории множеств.
  • Глава II. Действительные (вещественные) числа
    • § 1. Аксиоматика и некоторые общие свойства множества действительных чисел
      • 1. Определение множества действительных чисел.
      • 2. Некоторые общие алгебраические свойства действительных чисел.
      • 3. Аксиома полноты и существование верхней (нижней) грани числового множества.
    • § 2. Важнейшие классы действительных чисел и вычислительные аспекты операций с действительными числами
      • 1. Натуральные числа и принцип математической индукции.
      • 2. Рациональные и иррациональные числа.
      • 3. Принцип Архимеда.
      • 4. Геометрическая интерпретация множества действительных чисел и вычислительные аспекты операций с действительными числами.
    • § 3. Основные леммы, связанные с полнотой множества действительных чисел
      • 1. Лемма о вложенных отрезках (принцип Коши-Кантора).
      • 2. Лемма о конечном покрытии (принцип Бореля-Лебега.
      • 3. Лемма о предельной точке (принцип Больцано-Вейерштрасса).
    • § 4. Счетные и несчетные множества
      • 1. Счетные множества.
      • 2. Мощность континуума.
  • Глава III. Предел
    • § 1. Предел последовательности
      • 1. Определения и примеры.
      • 2. Свойства предела последовательности.
      • 3. Вопросы существования предела последовательности.
      • 4. Начальные сведения о рядах.
    • § 2. Предел функции
      • 1. Определения и примеры.
      • 2. Свойства предела функции.
      • 3. Общее определение предела функции (предел по базе).
      • 4. Во просы существования предела функции.
  • Глава IV. Непрерывные функции
    • § 1. Основные определения и примеры
      • 1. Непрерывность функции в точке.
      • 2. Точки разрыва.
    • § 2. Свойства непрерывных функций
      • 1. Локальные свойства.
      • 2. Глобальные свойства непрерывных функций.
  • Глава V. Дифференциальное исчисление
    • § 1. Дифференцируемая функция
      • 1. Задача и наводящие соображения.
      • 2. Функция, дифференцируемая в точке.
      • 3. Касательная; геометрический смысл производной и дифференциала.
      • 4. Роль системы координат.
      • 5. Некоторые примеры.
    • § 2. Основные правила дифференцирования
      • 1. Дифференцирование и арифметические операции.
      • 2. Дифференцирование композиции функций.
      • 3. Дифференцирование обратной функции.
      • 4. Таблица производных основных элементарных функций.
      • 5. Дифференцирование простейшей неявно заданной функции.
      • 6. Производные высших порядков.
    • § 3. Основные теоремы дифференциального исчисления
      • 1. Лемма Ферма и теорема Ролля.
      • 2. Теоремы Лагранжа и Коши о конечном приращении.
      • 3. Формула Тейлора.
    • § 4. Исследование функций методами дифференциального исчисления
      • 1. Условия монотонности функции.
      • 2. Условия внутреннего экстремума функции.
      • 3. Условия выпуклости функции.
      • 4. Правило Лопиталя.
      • 5. Построение графика функции.
    • § 5. Комплексные числа и взаимосвязь элементарных функций 2
      • 1. Комплексные числа.
      • 2. Сходимость в С и ряды с комплексными членами.
      • 3. Формула Эйлера и взаимосвязь элементарных функций.
      • 4. Представление функции степенным рядом, аналитичность.
      • 5. Алгебраическая замкнутость поля С комплексных чисел.
    • § 6. Некоторые примеры использования дифференциального исчисления в задачах естествознания
      • 1. Движение тела переменной массы.
      • 2. Барометрическая формула.
      • 3. Радиоактивный распад, цепная реакция и атомный котел.
      • 4. Падение тел в атмосфере.
      • 5. Еще раз о числе е и функции.
      • 6. Колебания.
    • § 7. Первообразная
      • 1. Первообразная и неопределенный интеграл.
      • 2. Основные общие приемы отыскания первообразной.
      • 3. Первообразные рациональных функций.
      • 4. Первообразные вида.
      • 5. Первообразные вида.
  • Глава VI. Интеграл
    • § 1. Определение интеграла и описание множества интегрируемых функций
      • 1. Задача и наводящие соображения.
      • 2. Определение интеграла Римана.
      • 3. Множество интегрируемых функций.
    • § 2. Линейность, аддитивность и монотонность интеграла
      • 1. Интеграл как линейная функция на пространстве.
      • 2. Интеграл как аддитивная функция отрезка интегрирования.
      • 3. Оценка интеграла, монотонность интеграла, теоремы о среднем.
    • § 3. Интеграл и производная
      • 1. Интеграл и первообразная.
      • 2. Формула Ньютона-Лейбница.
      • 3. Интегрирование по частям в определенном интеграле и формула Тейлора.
      • 4. Замена переменной в интеграле.
      • 5. Некоторые примеры.
    • § 4. Некоторые приложения интеграла
      • 1. Аддитивная функция ориентированного промежутка и интеграл.
      • 2. Длина пути.
      • 3. Площадь криволинейной трапеции.
      • 4. Объем тела вращения.
      • 5. Работа и энергия.
    • § 5. Несобственный интеграл
      • 1. Определения, примеры и основные свойства несобственных интегралов.
      • 2. Исследование сходимости несобственного интеграла.
      • 3. Несобственные интегралы с несколькими особенностями.
  • Глава VII. Функции многих переменных, их предел и непрерывность
    • § 1. Пространство Rm и важнейшие классы его подмножеств
      • 1. Множество Rm и расстояние в нем.
      • 2. Открытые и замкнутые множества в Rm.
      • 3. Компакты в Rm.
      • Задачи и упражнения.
    • § 2. Предел и непрерывность функции многих переменных
      • 1. Предел функции.
      • 2. Непрерывность функции многих переменных и свойства непрерывных функций.
  • Глава VIII. Дифференциальное исчисление функций многих переменных
    • § 1. Линейная структура в Rm
      • 1. Rm как векторное пространство.
      • 2. Линейные отображения.
      • 3. Норма в Rm.
      • 4. Евклидова структура в Rm.
    • § 2. Дифференциал функции многих переменных
      • 1. Дифференцируемость и дифференциал функции в точке.
      • 2. Дифференциал и частные производные вещественнозначной функции.
      • 3. Координатное представление дифференциала отображения. Матрица Якоби.
      • 4. Непрерывность, частные производные и дифференцируемость функции в точке.
    • § 3. Основные законы дифференцирования
      • 1. Линейность операции дифференцирования.
      • 2. Дифференцирование композиции отображений.
      • 3. Дифференцирование обратного отображения.
    • § 4. Основные факты дифференциального исчисления вещественнозначных функций многих переменных
      • 1. Теорема о среднем.
      • 2. Достаточное условие дифференцируемости функции многих переменных.
      • 3. Частные производные высшего порядка.
      • 4. Формула Тейлора.
      • 5. Экстремумы функций многих переменных.
      • 6. Некоторые геометрические образы, связанные с функциями многих переменных.
    • § 5. Теорема о неявной функции
      • 1. Постановка вопроса и наводящие соображения.
      • 2. Простейший вариант теоремы о неявной функции.
      • 3. Переход к случаю зависимости F(x1, …, хn, у) = 0.
      • 4. Теорема о неявной функции.
    • § 6. Некоторые следствия теоремы о неявной функции
      • 1. Теорема об обратной функции.
      • 2. Локальное приведение гладкого отображения к каноническому виду.
      • 3. Зависимость функций.
      • 4. Локальное разложение диффеоморфизма в композицию простейших.
      • 5. Лемма Морса.
    • § 7. Поверхность в Rn и теория условного экстремума
      • 1. Поверхность размерности к в Rn.
      • 2. Касательное пространство.
      • 3. Условный экстремум.
  • Некоторые задачи коллоквиумов
  • Вопросы к экзамену
  • Литература
  • Алфавитный указатель

Часть II

  • Глава IX. Непрерывные отображения (общая теория)
    • § 1. Метрическое пространство
      • 1. Определения и примеры.
      • 2. Открытые и замкнутые подмножества метрического пространства.
      • 3. Подпространство метрического пространства.
      • 4. Прямое произведение метрических пространств.
    • § 2. Топологическое пространство
      • 1. Основные определения.
      • 2. Подпространство топологического пространства.
      • 3. Прямое произведение топологических пространств.
    • § 3. Компакты
      • 1. Определение и общие свойства компакта.
      • 2. Метрические компакты.
    • § 4. Связные топологические пространства
    • § 5. Полные метрические пространства
      • 1. Основные определения и примеры.
      • 2. Пополнение метрического пространства.
    • § 6. Непрерывные отображения топологических пространств
      • 1. Предел отображения.
      • 2. Непрерывные отображения.
    • § 7. Принцип сжимающих отображений
  • Глава Х. Дифференциальное исчисление с более общей точки зрения
    • § 1. Линейное нормированное пространство
      • 1. Некоторые примеры линейных пространств анализа.
      • 2. Норма в векторном пространстве.
      • 3. Скалярное произведение в векторном пространстве.
    • § 2. Линейные и полилинейные операторы
      • 1. Определения и примеры.
      • 2. Норма оператора.
      • 3. Пространство непрерывных операторов.
    • § 3. Дифференциал отображения
      • 1. Отображение, дифференцируемое в точке.
      • 2. Общие законы дифференцирования.
      • 3. Некоторые примеры.
      • 4. Частные производные отображения.
    • § 4. Теорема о конечном приращении и некоторые примеры ее использования
      • 1. Теорема о конечном приращении.
      • 2. Некоторые примеры применения теоремы о конечном приращении.
    • § 5. Производные отображения высших порядков
      • 1. Определение n-го дифференциала.
      • 2. Производная по вектору и вычисление значений n-го дифференциала.
      • 3. Симметричность дифференциалов высшего порядка.
      • 4. Некоторые замечания.
    • § 6. Формула Тейлора и исследование экстремумов
      • 1. Формула Тейлора для отображений.
      • 2. Исследование внутренних экстремумов.
      • 3. Некоторые примеры.
    • § 7. Общая теорема о неявной функции
  • Глава XI. Кратные интегралы
    • § 1. Интеграл Римана на n-мерном промежутке
      • 1. Определение интеграла.
      • 2. Критерий Лебега интегрируемости функции по Рнману.
      • 3. Критерий Дарбу.
    • § 2. Интеграл по множеству
      • 1. Допустимые множества.
      • 2. Интеграл по множеству.
      • 3. Мера (объем) допустимого множества.
    • § 3. Общие свойства интеграла
      • 1. Интеграл как линейный функционал.
      • 2. Аддитивность интеграла.
      • 3. Оценки интеграла.
    • § 4. Сведение кратного интеграла к повторному
      • 1. Теорема Фубини.
      • 2. Некоторые следствия.
    • § 5. Замена переменных в кратном интеграле 139
      • 1. Постановка вопроса и эвристический вывод формулы - замены переменных.
      • 2. Измеримые множества и гладкие отображения.
      • 3. Одномерный случай.
      • 4. Случай простейшего диффеоморфизма в Rn.
      • 5. Композиция отображений и формула замены переменных.
      • 6. Аддитивность интеграла и завершение доказательства формулы замены переменных в интеграле.
      • 7. Некоторые следствия и обобщения формулы замены переменных в кратных интегралах.
    • § 6. Несобственные кратные интегралы
      • 1. Основные определения.
      • 2. Мажорантный призивк сходимости несобственного интеграла.
      • 3. Замена переменных в несобственном интеграле.
  • Глава XII. Поверхности и дифференциальные формы в Rn
    • § 1. Поверхности в Rn
    • § 2. Ориентация поверхности
    • § 3. Край поверхности и его ориентация
      • 1. Поверхность с краем.
      • 2. Согласование ориентации поверхности и края.
    • § 4. Площадь поверхности в евклидовом пространстве
    • § 5. Начальные сведения о дифференциальных формах
      • 1. Дифференциальная форма, определение и примеры.
      • 2. Координатная запись дифференциальной формы.
      • 3. Внешний дифференциал формы.
      • 4. Перенос векторов и форм при отображениях.
      • 5. Формы на поверхностях.
  • Глава XIII. Криволинейные и поверхностные интегралы
    • § 1. Интеграл от дифференциальной формы
      • 1. Исходные задачи, наводящие соображения, примеры.
      • 2. Определение интеграла от формы по ориентированной поверхности.
    • § 2. Форма объема, интегралы первого и второго рода
      • 1. Масса материальной поверхности.
      • 2. Плбщадь поверхности как интеграл от формы.
      • 3. Форма объема.
      • 4. Выражение формы объема в декартовых координатах.
      • 5. Интегралы первого и второго рода.
    • § 3. Основные интегральные формулы анализа
      • 1. Формула Грина.
      • 2. Формула Гаусса-Остроградского.
      • 3. Формула Стокса в R3.
      • 4. Общая формула Стокса.
  • Глава XIV. Элементы векторного анализа и теории поля
    • § 1. Дифференциальные Ъперации векторного анализа
      • 1. Скалярные и векторные поля
      • 2. Векторные поля и формы в R3.
      • 3. Дифференциальные операторы grad, rot, div и V.
      • 4. Некоторые дифференциальные формулы векторного анализа.
      • 5. Векторные операции в криволинейных координатах.
    • § 2. Интегральные формулы теории поля
      • 1. Классические интегральные формулы в векторных обозначениях.
      • 2. Физическая интерпретация.
      • 3. Некоторые дальнейшие интегральные формулы.
    • § 3. Потенциальные поля
      • 1. Потенциал векторного поля.
      • 2. Необходимое условие потенциальности.
      • 3. Критерий потенциальности векторного поля.
      • 4. Топологическая структура области и потенциал.
      • 5. Векторный потенциал. Точные и замкнутые формы.
    • § 4. Примеры приложений
      • 1. Уравнение теплопроводности.
      • 2. Уравнение неразрыв ности.
      • 3. Основные уравнения динамики сплошной среды.
      • 4. Волновое уравнение.
  • Глава XV. Интегрирование дифференциальных форм на многообразиях 305
    • § 1. Некоторые напоминания из линейной алгебры
      • 1. Алгебра форм.
      • 2. Алгебра кососимметрических форм.
      • 3. Линейные отображения линейных пространств, и сопряженные отображения сопряженных пространств. Задачи и упражнения
    • § 2. Многообразие.
      • 1. Определение многообразия.
      • 2. Гладкие многообразия и гладкие отображения.
      • 3. Ориентация, многообразия и, его края.
      • 4. Разбиение единицы и реализация многообразий в виде поверхностей в Rn.
    • § 3. Дифференциальные формы и их интегрирование на многообразиях
      • 1. Касательное пространство к многообразию в точке.
      • 2. Дифференциальная форма на многообразии.
      • 3. Внешний дифференциал.
      • 4. Интеграл от формы по многообразию.
      • 5. Формула Стокса.
    • § 4. Замкнутые и точные формы на многообразии
      • 1. Теорема Пуанкаре.
      • 2. Гомологии и когомологви.
  • Глава XVI. Равномерная сходимость и основные операции анализа над рядами и семействами функций
    • § 1. Поточечная и равномерная сходимость
      • 1. Поточечная сходимость.
      • 2. Постановка основных вопросов.
      • 3. Сходимость и равномерная сходимость семейства функций, зависящвх от параметра.
      • 4. Критерий Коши равномерной сходимости.
    • § 2. Равномерная сходимость рядов функций
      • 1. Основные определения и критерий равномерной сходимости ряда.
      • 2. Признак Вейергатрасса равномерной сходимости ряда.
      • 3. Признак Абеля-Дирихле.
    • § 3. Функциональные свойства предельной функции
      • 1. Конкретизация задачи.
      • 2. Условия коммутнрованвя двух предельных переходов.
      • 3. Непрерывность и предельный переход.
      • 4. Интегрирование и предельный переход.
      • 5. Дифференцирование и предельный переход.
    • § 4. Компактные и плотные подмножества пространства непрерывных функций
      • 1. Теорема Арцела-Асколи.
      • 2. Метрическое пространство.
      • 3. Теорема Стоуна.
  • Глава XVII. Интегралы, зависящие от параметра
    • § 1. Собственные интегралы, зависящие от параметра
      • 1. Понятие интеграла, зависящего от параметра.
      • 2. Непрерывность интеграла, зависящего от параметра.
      • 3. Дифференцирование интеграла, зависящего от параметра.
      • 4. Интегрирование интеграла, зависящего от параметра
    • § 2. Несобственные интегралы, зависящие от параметра
      • 1. Равномерная сходимость несобственного интеграла относительно параметра.
      • 2. Предельный переход под знаком несобственного интеграла и непрерывность несобственного интеграла, зависящего от параметра.
      • 3. Дифференцирование несобственного интеграла по параметру.
      • 4. Интегрирование несобственного интеграла по параметру.
    • § 3. Эйлеровы интегралы
      • 1. Бета-функция.
      • 2. Гамма-функция.
      • 3. Связь между функциями В и Г.
      • 4. Некоторые примеры.
    • § 4. Свертка функций и начальные сведения об обобщенных функциях
      • 1. Свертка в физических задачах (наводящие соображения).
      • 2. Некоторые общие свойства свертки.
      • 3. Дельтаобразные семейства функций и аппроксимациониая теорема Вейерштрасса.
      • 4. Начальные представления о распределениях.
    • § 5. Кратные интегралы, зависящие от параметра
      • 1. Собственные кратные интегралы, зависящие от параметра.
      • 2. Несобственные кратные интегралы, зависящие от параметра.
      • 3. Несобственные интегралы с переменной особенностью.
      • 4. Свертка, фундаментальное решение и обобщенные функции в многомерном случае.
  • Глава XVIII Рид Фурье и преобразование Фурье
    • § 1. Основные общие представления, связанные с понятием ряда Фурье
      • 1. Ортогональные системы функций.
      • 2. Коэффициенты Фурье и ряд Фурье.
      • 3. Об одном важном источнике ортогональных систем функций в анализе.
    • § 2. Тригонометрический ряд Фурье
      • 1. Основные виды сходимости классического ряда Фурье.
      • 2. Исследование поточечной схвдимости тригонометрического ряда Фурье.
      • 3. Гладкость функции и скорость убывания коэффициентов Фурье.
      • 4. Полнота тригонометрической системы.
    • § 3. Преобразование Фурье
      • 1. Представление функции интегралом Фурье.
      • 2. Регулярность функции и скорость убывания ее преобразования Фурье.
      • 3. Важнейшие аппаратные свойства преобразования Фурье.
      • 4. Примеры приложений.
  • Глава XIX. Асимптотические разложения
    • § 1. Асимптотическая формула и асимптотический ряд
      • 1. Основные определения.
      • 2. Общие сведения об асимптотических рядах.
      • 3. Степенные асимптотические ряды.
    • § 2. Асимптотика интегралов (метод Лапласа)
      • 1. Идея метода Лапласа.
      • 2. Принцип локализации дли интеграла Лапласа.
      • 3. Канонические интегралы и их асимптотика.
      • 4. Главный член асимптотики интеграла Лапласа.
      • 5. Асимптотические разложения интегралов Лапласа.
  • Задачи и упражнения
  • Литература
  • Указатель основных обозначений
  • Алфавитный указатель
Комментарии: 0