Римановы поверхности и модулярные формы
Курс посвящен римановым поверхностям, модулярным формам и некоторым их приложениям. Эти фундаментальные понятия, играющие важную роль в самых разных разделах математики, можно определить при помощи верхней полуплоскости – множества комплексных чисел с положительной мнимой частью, – которую мы будем рассматривать как модель Пуанкаре плоскости Лобачевского.
Соответствующие определения будут даны в курсе. Будет показано, что движения плоскости Лобачевского совпадают с дробно-линейным преобразованиями полуплоскости, а дискретные группы движений приводят к замощениям плоскости Лобачевского конгруэнтными многоугольниками (сторонами которых, с точки зрения евклидовой геометрии, являются дуги окружностей). Отождествляя между собой подходящие стороны одного из таких многоугольников (или отождествляя точки, лежащие на одной орбите относительно заданной дискретной группы движений), мы получаем риманову поверхность («сферу с ручками» с числом ручек не менее двух).
Мы увидим, что подгруппам группы целочисленных матриц размера 2×2 с определителем единица соответствуют римановы поверхности, и изучение функций на таких поверхностях приводит к понятию модулярной формы. Модулярные формы – это функции на верхней полуплоскости, удовлетворяющие определенным функциональным уравнениям, связанным с рассматриваемой группой.
Этот подход к понятиям римановой поверхности и модулярной формы будет подробно описан в начале курса.
Затем мы увидим, что некоторые поразительные числовые тождества получают естественное объяснение на языке модулярных форм. Общий принцип здесь такой: модулярных форм мало, поэтому между ними можно ожидать нетривиальных соотношений.
Модулярные формы возникают в самых разных областях математики. Например, Великая Теорема Ферма была доказана в качестве следствия гипотезы Таниямы–Шимуры–Вейля (ныне имееющей статус теоремы) о связи эллиптических кривых с модулярными формами.
Мы рассмотрим некоторые применения модулярных форм. В частности, мы докажем единственность решетки Лича – замечательной решетки в 24-мерном пространстве.
От слушателей предполагается знакомство с комплексными числами и началами анализа.
Успенский Владимир Владимирович.
Летняя школа «Современная математика», г. Дубна
20-28 июля 2015 г.
Похожее
-
Владимир Успенский
Как известно, ежа нельзя причесать. Иными словами, на двумерной сфере нет касательного векторного поля, нигде не обращающегося в нуль. Трехмерная сфера ведет себя в этом отношении совсем иначе: на ней можно построить три касательных векторных поля, линейно независимых в каждой точке. Это означает, что трехмерная сфера параллелизуема. Возникает вопрос, для каких n сфера размерности n–1 параллелизуема. С этим вопросом тесно связан другой: для каких n на n-мерном эвклидовом пространстве можно ввести билинейное умножение, при котором произведение любых двух ненулевых векторов ненулевое. Рассматривая вещественные числа, комплексные числа, кватернионы или октонионы, мы видим, что это можно сделать, если n принимает одно из значений 1, 2, 4, 8. Оказывается, что этот список значений и является ответом на оба поставленных выше вопроса. Это трудная теорема. Ее можно доказать методами К-теории. Курс будет посвящен объяснению основных идей доказательства.
-
Алексей Зыкин
Задача о конгруэнтных числах, упоминавшаяся еще в арабских математических текстах X века, состоит в следующем: для каких рациональных чисел s найдется прямоугольный треугольник с рациональными сторонами и площадью s? Удивительным образом эта проблема оказывается связанной с самой современной математикой — ее решение может быть получено по модулю так называемой гипотезы Берча и Свиннертона-Дайра, входящей в список «Проблем тысячелетия» института Клэя и за решение которой предлагается миллион долларов. Я попытаюсь рассказать о том, откуда берется такая связь. По пути нам встретится множество объектов и теорем, имеющих огромную важность в современной арифметической геометрии и теории чисел. Мы обсудим эллиптические кривые и закон сложения на них, теорему Морделла–Вейля, поговорим о том, как полезно смотреть на решения уравнений по модулю простого числа pp и упомянем теорему Минковского–Хассе о квадратичных формах, по пути нам понадобятся такие классические утверждения как теорема Дирихле о простых числах в арифметических прогрессиях и квадратичный закон взаимности. Наконец, если останется время, мы упомянем об L-функциях эллиптических кривых и модулярных формах, — то без чего невозможно представить современную теорию чисел.
-
Роман Федоров
Дзета-функция Римана была введена Эйлером в 1737-м году. Она может быть задана рядом ζ(s) = ∑ 1/n^s при тех значениях s, при которых этот ряд сходится. Я буду рассказывать, в основном, об обобщениях дзета-функции Римана — так называемой арифметической дзета-функции, которая ставится в соответствие диофантову уравнению (дзета-функция Римана соответствует «тривиальному» уравнению x=0).
-
Владимир Успенский
Успенский Владимир Андреевич, доктор физико-математических наук, профессор. Летняя школа «Современная математика», г. Дубна, 9 июля 2012 г.; XIV Летняя лингвистическая школа, г. Дубна, «Ратмино», 8-18 июля 2012 г.
-
Владимир Успенский
Эту формулу нашел Гаусс, он использовал ee в одном из своих доказательств квадратичного закона взаимности. Лишь через несколько лет он сумел доказать, что сумма S_m всегда положительна, так что S_m рано квадратному корню из m. Гаусс записал в дневнике, что его озарение было подобно “вспышке молнии”. Позднее многие известные математики предложили свои доказательства. Одно из самых элегантных принадлежит Дирихле, оно использует ряды Фурье. Предполагается знакомство с понятием сравнения по модулю. Полезно (но необязательно) иметь представление о малой теореме Ферма и о квадратичных вычетах по простому модулю. Знакомства с рядами Фурье не предполагается, необходимые сведения будут сообщены.
-
Владимир Успенский
Около 20 лет назад произошло одно из самых сенсационных событий за всю историю математики: была доказана Великая Теорема Ферма. Эта теорема может быть выведена из так называемой гипотезы Таниямы–Шимуры–Вейля (которая теперь имеет статус теоремы): всякая эллиптическая кривая, определенная над полем рациональных чисел, модулярна. Цель нашего курса — разобраться в том, что означают эти слова. Мы познакомимся с необходимыми понятиями (римановы поверхности, модулярные формы, алгебраические кривые) и рассмотрим различные варианты теоремы о модулярности эллиптических кривых.
-
Галина Синкевич, Владимир Тихомиров
Научная биография Карла Вейерштрасса, его основные работы, влияние его учения на развитие математики. Вейерштрасс и теория вещественного числа, зарождение общей топологии, начала математического анализа, комплексный анализ, теория эллиптических функций, теория чисел, вариационное исчисление. Размышления Вейерштрасса о математике и математической жизни.
-
Сергей Ландо
Числа Гурвица были введены А. Гурвицем в конце 19 века. Они перечисляют разветвленные накрытия двумерных поверхностей и имеют множество других проявлений — перечисляют разнообразные классы графов, являются коэффициентами связи в симметрических группах, представляют собой инварианты Громова–Виттена комплексных кривых.
-
Владимир Арнольд
Лекцию читает Арнольд Владимир Игоревич (1937–2010), доктор физико-математических наук, профессор, академик РАН. Летняя школа «Современная математика», г. Дубна, 20 июля 2003 г.
-
Георгий Шабат
Предполагается прочесть четыре лекции. Первые две будут популярны и общепонятны, а третья и четвёртая будут содержать довольно поверхностные обзоры некоторых перспективных направлений современной математики. 1. О геометрии над конечными полями. 2. Группы Шевалле и группы перестановок. 3. Линейная алгебра над F1 и гомотопическая топология. 4. Разное. Обобщённые кольца Дурова и F∅, F±1, F∞√1. Анализ на множестве корней из единицы (по Хабиро, Концевичу, Манину). О геометрии Аракелова. О тропической математике.
Далее >>>
|
|