Модулярные формы и эллиптические кривые
Около 20 лет назад произошло одно из самых сенсационных событий за всю историю математики: была доказана Великая Теорема Ферма. Эта теорема может быть выведена из так называемой гипотезы Таниямы–Шимуры–Вейля (которая теперь имеет статус теоремы): всякая эллиптическая кривая, определенная над полем рациональных чисел, модулярна.
Цель нашего курса — разобраться в том, что означают эти слова. Мы познакомимся с необходимыми понятиями (римановы поверхности, модулярные формы, алгебраические кривые) и рассмотрим различные варианты теоремы о модулярности эллиптических кривых. Подробнее с этим материалом можно познакомиться по книге F. Diamond, J. Shurman, A First Course in Modular Forms.
Успенский Владимир Владимирович.
Летняя школа «Современная математика», г. Дубна
23-29 июля 2014 г.
Похожее
-
Владимир Успенский
Как известно, ежа нельзя причесать. Иными словами, на двумерной сфере нет касательного векторного поля, нигде не обращающегося в нуль. Трехмерная сфера ведет себя в этом отношении совсем иначе: на ней можно построить три касательных векторных поля, линейно независимых в каждой точке. Это означает, что трехмерная сфера параллелизуема. Возникает вопрос, для каких n сфера размерности n–1 параллелизуема. С этим вопросом тесно связан другой: для каких n на n-мерном эвклидовом пространстве можно ввести билинейное умножение, при котором произведение любых двух ненулевых векторов ненулевое. Рассматривая вещественные числа, комплексные числа, кватернионы или октонионы, мы видим, что это можно сделать, если n принимает одно из значений 1, 2, 4, 8. Оказывается, что этот список значений и является ответом на оба поставленных выше вопроса. Это трудная теорема. Ее можно доказать методами К-теории. Курс будет посвящен объяснению основных идей доказательства.
-
Владимир Успенский
Курс посвящен римановым поверхностям, модулярным формам и некоторым их приложениям. Эти фундаментальные понятия, играющие важную роль в самых разных разделах математики, можно определить при помощи верхней полуплоскости – множества комплексных чисел с положительной мнимой частью, – которую мы будем рассматривать как модель Пуанкаре плоскости Лобачевского. Соответствующие определения будут даны в курсе.
-
Каким образом появились числа и как они повлияли на развитие человечества – эти вопросы в центре внимания 5-серийного проекта. В эпизодах, которые пронесут нас сквозь время и пространство, мы увидим, что математика играла важную роль в Древнем Египте и Греции, Индии, Средневековой Европе и продолжает играть сейчас в нашем современном мире.
-
Владимир Успенский
Если разбить натуральный ряд на конечное число частей, то в одной из этих частей содержатся сколь угодно длинные арифметические прогрессии (теорема ван дер Вардена). Теорема Семереди усиливает теорему ван дер Вардена: если некоторые натуральные числа покрашены в зеленый цвет и при этом существуют сколь угодно длинные отрезки натурального ряда, в которых доля зеленых чисел составляет не менее одного процента (или любой другой положительной константы), то существуют сколь угодно длинные арифметические прогрессии, состоящие из зеленых чисел. Замечательное доказательство теоремы Семереди, предложенное Фюрстенбергом, основано на эргодической теории. Эта теория изучает преобразования, сохраняющие меру, и поведение таких преобразований при итерациях. В курсе будут изложены основные идеи доказательства Фюрстенберга.
-
Владимир Успенский
Эту формулу нашел Гаусс, он использовал ee в одном из своих доказательств квадратичного закона взаимности. Лишь через несколько лет он сумел доказать, что сумма S_m всегда положительна, так что S_m рано квадратному корню из m. Гаусс записал в дневнике, что его озарение было подобно “вспышке молнии”. Позднее многие известные математики предложили свои доказательства. Одно из самых элегантных принадлежит Дирихле, оно использует ряды Фурье. Предполагается знакомство с понятием сравнения по модулю. Полезно (но необязательно) иметь представление о малой теореме Ферма и о квадратичных вычетах по простому модулю. Знакомства с рядами Фурье не предполагается, необходимые сведения будут сообщены.
-
Математик предлагает продать душу дьяволу за то, чтобы тот доказал или опроверг теорему Ферма. Режиссер: Семен Райтбурт В ролях: В. Шестаков, А. Кайдановский, А. Покровская СССР, 1972 г.
-
В прошлом двадцатом веке случилось событие, равного по масштабу которого в математике не было за всю ее историю. 19-го сентября 1994 года была доказана теорема, сформулированная Пьером де Ферма (1601-1665) более 350-ти лет назад в 1637 году. Она известна также как «последняя теорема Ферма» или как «большая теорема Ферма», поскольку есть еще так называемая "малая теорема Ферма". Ее доказал 41-летний, до этого момента в математическом сообществе ничем особо непримечательный, и по математическим меркам уже немолодой, профессор Принстонского университета Эндрю Уайлс. Удивительно, что про это событие толком не знают не только наши обычные российские обыватели, но и многие интересующиеся наукой люди, включая даже немалое число ученых в России, так или иначе использующих математику.
-
Дмитрий Орлов
Начав с основной теоремы арифметики, мы расскажем про АВС-гипотезу, которая была сформулирована в 1985 году и быстро стала одной из центральных проблем в теории чисел из-за её связей с другими нерешёнными задачами, а также из-за того, что многие уже доказанные известные результаты были бы её следствиями.
-
Владимир Успенский
Успенский Владимир Андреевич, доктор физико-математических наук, профессор. Летняя школа «Современная математика», г. Дубна, 9 июля 2012 г.; XIV Летняя лингвистическая школа, г. Дубна, «Ратмино», 8-18 июля 2012 г.
-
15 марта стало известно, что премию Абеля в 2016 году получит Эндрю Уайлз за доказательство гипотезы Таниямы-Симуры для полустабильных эллиптических кривых и следующее из этой гипотезы доказательство великой теоремы Ферма. В настоящее время премия составляет 6 миллионов норвежских крон, то есть примерно 50 миллионов рублей. По словам Уайлса, присуждение премии стало для него «полной неожиданностью». Вручение премии — прекрасный повод вспомнить несколько историй, связанных с теоремой Ферма.
Далее >>>
|
|