Теорема Семереди и динамические системы
Если разбить натуральный ряд на конечное число частей, то в одной из этих частей содержатся сколь угодно длинные арифметические прогрессии (теорема ван дер Вардена). Теорема Семереди усиливает теорему ван дер Вардена: если некоторые натуральные числа покрашены в зеленый цвет и при этом существуют сколь угодно длинные отрезки натурального ряда, в которых доля зеленых чисел составляет не менее одного процента (или любой другой положительной константы), то существуют сколь угодно длинные арифметические прогрессии, состоящие из зеленых чисел.
Замечательное доказательство теоремы Семереди, предложенное Фюрстенбергом, основано на эргодической теории. Эта теория изучает преобразования, сохраняющие меру, и поведение таких преобразований при итерациях.
В курсе будут изложены основные идеи доказательства Фюрстенберга. Развитие этих идей привело к доказательству теоремы о существовании сколь угодно длинных арифметических прогрессий, состоящих из простых чисел (Green–Tao). Остается открытой гипотеза Эрдеша: если А — такое множество натуральных чисел, что сумма обратных величин 1/n бесконечна (где n пробегает А), то А содержит сколь угодно длинные арифметические прогрессии.
От слушателей предполагается знакомство с такими понятиями, как сумма ряда и интеграл.
Успенский Владимир Владимирович
Летняя школа «Современная математика», г. Дубна
21-29 июля 2012 г.
Похожее
-
Сергей Новиков
Квазипериодические функции: что это такое, откуда возникают, проблемы их изучения, как появляется топология и динамические системы. Лекцию читает Новиков Сергей Петрович, академик РАН, доктор физико-математических наук, профессор.
-
Владимир Успенский
Как известно, ежа нельзя причесать. Иными словами, на двумерной сфере нет касательного векторного поля, нигде не обращающегося в нуль. Трехмерная сфера ведет себя в этом отношении совсем иначе: на ней можно построить три касательных векторных поля, линейно независимых в каждой точке. Это означает, что трехмерная сфера параллелизуема. Возникает вопрос, для каких n сфера размерности n–1 параллелизуема. С этим вопросом тесно связан другой: для каких n на n-мерном эвклидовом пространстве можно ввести билинейное умножение, при котором произведение любых двух ненулевых векторов ненулевое. Рассматривая вещественные числа, комплексные числа, кватернионы или октонионы, мы видим, что это можно сделать, если n принимает одно из значений 1, 2, 4, 8. Оказывается, что этот список значений и является ответом на оба поставленных выше вопроса. Это трудная теорема. Ее можно доказать методами К-теории. Курс будет посвящен объяснению основных идей доказательства.
-
Владимир Успенский
Эту формулу нашел Гаусс, он использовал ee в одном из своих доказательств квадратичного закона взаимности. Лишь через несколько лет он сумел доказать, что сумма S_m всегда положительна, так что S_m рано квадратному корню из m. Гаусс записал в дневнике, что его озарение было подобно “вспышке молнии”. Позднее многие известные математики предложили свои доказательства. Одно из самых элегантных принадлежит Дирихле, оно использует ряды Фурье. Предполагается знакомство с понятием сравнения по модулю. Полезно (но необязательно) иметь представление о малой теореме Ферма и о квадратичных вычетах по простому модулю. Знакомства с рядами Фурье не предполагается, необходимые сведения будут сообщены.
-
Владимир Успенский
Около 20 лет назад произошло одно из самых сенсационных событий за всю историю математики: была доказана Великая Теорема Ферма. Эта теорема может быть выведена из так называемой гипотезы Таниямы–Шимуры–Вейля (которая теперь имеет статус теоремы): всякая эллиптическая кривая, определенная над полем рациональных чисел, модулярна. Цель нашего курса — разобраться в том, что означают эти слова. Мы познакомимся с необходимыми понятиями (римановы поверхности, модулярные формы, алгебраические кривые) и рассмотрим различные варианты теоремы о модулярности эллиптических кривых.
-
Владимир Успенский
Курс посвящен римановым поверхностям, модулярным формам и некоторым их приложениям. Эти фундаментальные понятия, играющие важную роль в самых разных разделах математики, можно определить при помощи верхней полуплоскости – множества комплексных чисел с положительной мнимой частью, – которую мы будем рассматривать как модель Пуанкаре плоскости Лобачевского. Соответствующие определения будут даны в курсе.
-
Гаянэ Панина
Курс представляет собой букет из трёх очень старых и трёх очень новых идей. Основной объект — число целых (т.е. с целыми координатами) точек в многограннике. Зачем нужны целые точки? Несколько примеров: многогранник Ньютона, Теорема Бриона — для начала без доказательства, просто в качестве фокуса, а также подсчёт целых метрических ленточных графов. Число целых точек в выпуклом многограннике ведёт себя как полином. Согласно конструкции, в полином, вычисляющий число целых точек, имеет смысл подставлять лишь положительные числа. Чтобы придать смысл отрицательной подстановке, нужны виртуальные многогранники. Двойственность Эрхарта и её естественное обобщение. Секрет фокуса Бриона.
-
Владимир Арнольд
Ж. Л. Лагранж доказал, что последовательность неполных частных (начиная с некоторого места) периодична, если и только если число x — квадратичная иррациональность. Р. О. Кузьмин доказал, что в последовательности неполных частных почти любого вещественного числа доля d_m равных m неполных частных одинакова (для типичных вещественных чисел). Доля d_m убывает при m→∞ как 1/m^2 и её величина была предсказана Гауссом (ничего не доказавшим). В. И. Арнольда высказал (лет 20 назад) гипотезу, что статистика Гаусса–Кузьмина d_m выполняется также для периодов цепных дробей корней квадратных уравнений x^2+px+q=0 (с целыми p и q): если выписать вместе неполные частные, составляющие периоды всех цепных дробей корней таких уравнений с p^2+q^2≤R^2, то доля неполного частного m среди них будет стремиться к числу d_m при R→∞. В. А. Быковский со своими хабаровскими учениками доказали недавно эту давнюю гипотезу. Несмотря на это, вопрос о статистике не букв, а составленных из них слов [a_k+1, a_k+2,…, a_k+T], которые являются периодами цепных дробей каких-либо корней x уравнений x^2+px+q=0 далеко не решён.
-
Дмитрий Аносов
Теорема Шарковского, доказанная в 1960-х гг., даёт ответ на вопрос: как для непрерывного отображения отрезка в себя связано наличие периодических точек различных периодов? Эта теорема была первым общим результатом о динамических системах, получающихся при итерировании отображений отрезка в себя. Хотя эта «одномерная динамика» кажется чем-то весьма специальным, подобные отображения возникают в некоторых вопросах естествознания и техники, а также играют важную вспомогательную роль при чисто теоретических исследованиях более сложных динамических систем.
-
Виктор Клепцын
Лекцию читает Клепцын Виктор Алексеевич. Летняя школа «Современная математика», г. Дубна. 29 июля 2017 г.
-
Наталия Гончарук
В каждой точке плоскости нарисуем вектор. Получилось векторное поле. Будем считать, что по плоскости течёт вода, а векторы — её скорости течения в разных точках. Теперь бросим в воду несколько щепок и нарисуем траектории их движения. Получится фазовый портрет векторного поля. По картинке стало видно, что происходит со щепками: некоторые приближаются к внешнему предельному циклу, от другого цикла все щепки отдаляются. Куда ещё могут накапливаться траектории щепок (теорема Пуанкаре-Бендиксона). Как ещё могут быть устроены фазовые портреты. Также мы обсудим бифуркации: перестройки фазовых портретов, когда векторное поле слегка меняется. Будут свежие результаты и открытые вопросы.
Далее >>>
|
|