Бифуркации векторных полей на плоскости
В каждой точке плоскости нарисуем вектор. Получилось векторное поле, см. рис. 1. Будем считать, что по плоскости течёт вода, а векторы — её скорости течения в разных точках.
Рис. 1. Векторное поле
Рис. 2. Фазовый портрет
Теперь бросим в воду несколько щепок и нарисуем траектории их движения, см. рис. 2. Получится фазовый портрет векторного поля. По картинке стало видно, что происходит со щепками: некоторые приближаются к внешнему (красному) предельному циклу, а некоторые — к зелёному стоку в центре картинки. От внутреннего (синего) цикла все щепки отдаляются.
Предварительных знаний не требуется. Для некоторых задач пригодится умение считать производные. Примерная программа
На 1–2 занятиях я расскажу, куда ещё могут накапливаться траектории щепок (теорема Пуанкаре-Бендиксона).
На 3 занятии я опишу, как ещё могут быть устроены фазовые портреты.
На 3–4 занятиях мы обсудим бифуркации: перестройки фазовых портретов, когда векторное поле слегка меняется. Будут свежие результаты и открытые вопросы.
Гончарук Наталия Борисовна
Летняя школа «Современная математика», г. Дубна
24-29 июля 2017 г.
Похожее
-
Юлий Ильяшенко
Как менялись наши представления об аттракторах? Чего мы ожидаем от аттракторов? Предполагается, что слушатели знают определение и свойства компактных множеств в евклидовом пространстве, а также знакомы с определениями и примерами гомеоморфизмов и диффеоморфизмов. Последние определения будут даны в курсе, но лучше знать их заранее.
-
Хаос — математический фильм, состоящий из девяти глав, по тринадцать минут каждая. Это фильм для широкой публики, посвященный динамическим системам, эффекту бабочки и теории хаоса.
-
Наталия Гончарук, Юрий Кудряшов
Грубо говоря, это гладкое отображение, которое растягивает в одних направлениях и сжимает в других. Про диффеоморфизмы Аносова было сформулировано много гипотез общего характера. Многие из них до сих пор открыты, несмотря на большой интерес, которых они вызывают. На первых двух занятиях мы обсудим различные свойства линейного отображения двумерного тора, заданного формулой (x, y) → (2x+y, x+y): устойчивое и неустойчивое направления, перемешивание, транзитивность, плотность периодических орбит. Кроме того, мы построим марковское разбиение, которое позволяет связать этот диффеоморфизм с цепью Маркова. На третьем занятии мы дадим общее определение диффеоморфизма Аносова и построим пример диффеоморфизма, действующий на более сложном многообразии. Последнее занятие будет посвящено открытым вопросам о диффеоморфизмах Аносова.
-
Наталия Гончарук, Юрий Кудряшов
Параллельный перенос, поворот, поворотная гомотетия, композиция инверсии и осевой симметрии — частные случаи дробно-линейных отображений комплексной плоскости (в общем случае дробно-линейное отображение плоскости — это отображение, при котором точка z=x+iy переходит в точку (az+b)/(cz+d)). Как известно, инверсия выворачивает круг наизнанку: то, что было внутри, оказывается снаружи, и наоборот. Говорят, что набор дробно-линейных отображений f_1,…,f_g порождает группу Шоттки, если есть набор замкнутых жордановых кривых γ_1,…,γ_g, таких что: 1) Области, ограниченные кривыми γ_j, не пересекаются; 2) Под действием отображения f_j точки внутри γ_{2j-1} оказываются снаружи γ_{2j}, а точки снаружи γ_{2j-1} — внутри γ_{2j}.
-
Виктор Клепцын
Лекцию читает Клепцын Виктор Алексеевич. Летняя школа «Современная математика», г. Дубна. 29 июля 2017 г.
-
Дмитрий Аносов
Теорема Шарковского, доказанная в 1960-х гг., даёт ответ на вопрос: как для непрерывного отображения отрезка в себя связано наличие периодических точек различных периодов? Эта теорема была первым общим результатом о динамических системах, получающихся при итерировании отображений отрезка в себя. Хотя эта «одномерная динамика» кажется чем-то весьма специальным, подобные отображения возникают в некоторых вопросах естествознания и техники, а также играют важную вспомогательную роль при чисто теоретических исследованиях более сложных динамических систем.
-
Владимир Успенский
Если разбить натуральный ряд на конечное число частей, то в одной из этих частей содержатся сколь угодно длинные арифметические прогрессии (теорема ван дер Вардена). Теорема Семереди усиливает теорему ван дер Вардена: если некоторые натуральные числа покрашены в зеленый цвет и при этом существуют сколь угодно длинные отрезки натурального ряда, в которых доля зеленых чисел составляет не менее одного процента (или любой другой положительной константы), то существуют сколь угодно длинные арифметические прогрессии, состоящие из зеленых чисел. Замечательное доказательство теоремы Семереди, предложенное Фюрстенбергом, основано на эргодической теории. Эта теория изучает преобразования, сохраняющие меру, и поведение таких преобразований при итерациях. В курсе будут изложены основные идеи доказательства Фюрстенберга.
-
Сергей Новиков
Лекцию читает Новиков Сергей Петрович, академик РАН, доктор физико-математических наук, профессор. Летняя школа «Современная математика», г. Дубна 21 июля 2005 г.
-
Сергей Новиков
Квазипериодические функции: что это такое, откуда возникают, проблемы их изучения, как появляется топология и динамические системы. Лекцию читает Новиков Сергей Петрович, академик РАН, доктор физико-математических наук, профессор.
-
Юлий Ильяшенко
Пусть на плоскости (или на прямой) задано векторное поле: в каждой точке нарисован вектор. Этому полю можно сопоставить дифференциальное уравнение: точка x(t) движется «по стрелочкам» – так, что dx/dt=v(x(t)) при всех t. Типичный вопрос теории динамических систем – описать качественное поведение решений при t→+∞. Скажем, решения могут стремиться к устойчивому положению равновесия, «наматываться» на периодическую траекторию («предельный цикл»), и так далее. Следующий вопрос – а что будет, если система зависит от параметра, и мы начинаем этот параметр менять? Как будет изменяться качественное поведение системы?
Далее >>>
|
|