x, y, z

Бифуркации векторных полей на плоскости

Юлий Ильяшенко

Комментарии: 0
Часть 1

Часть 2

Пусть на плоскости (или на прямой) задано векторное поле: в каждой точке нарисован вектор. Этому полю можно сопоставить дифференциальное уравнение: точка $x(t)$ движется «по стрелочкам» – так, что

$$\frac{dx}{dt}=v(x(t))$$ при всех $t$.

Типичный вопрос теории динамических систем – описать качественное поведение решений при $t\to+\infty$. Скажем, решения могут стремиться к устойчивому положению равновесия (см. рис. 1), «наматываться» на периодическую траекторию («предельный цикл», см. рис. 2), и так далее.

Поведение решений системы

Следующий вопрос – а что будет, если система зависит от параметра, и мы начинаем этот параметр менять? Как будет изменяться качественное поведение системы?

Достаточно часто при изменении параметра в каком-то интервале качественное поведение не изменяется, пока параметр не достигает некоторого критического («бифуркационного») значения, при котором поведение резко изменяется. Простейший пример такой картины (для динамики на прямой) изображен на рис. 3: у уравнения

$$\frac{dx}{dt}=x^2+\varepsilon$$

при $\varepsilon<0$ два положения равновесия, $x_{\pm}=\pm\sqrt{\varepsilon}$, из которых одно устойчивое, а одно неустойчивое. В момент $\varepsilon=0$ происходит бифуркация: эти положения равновесия сливаются в одно полуустойчивое. Наконец, при сколь угодно малом положительном εε это положение равновесия исчезает, и точки проходят из минус бесконечности в плюс бесконечность, «нигде не задерживаясь». Этот сценарий называют бифуркацией седлоузла.

Типичные однопараметрические бифуркации векторных полей на прямой и на плоскости полностью изучены. На прямой такая бифуркация всего одна – это описанная выше бифуркация седлоузла. Список типичных бифуркаций в однопараметрических семействах оказался счетным (а не конечным, как ранее ожидалось).

«Картографирование» двупараметрических бифуркаций представляет собой интересную, объемную, и почти еще не тронутую задачу. Однако, удивительным образом, когда параметров становится три – список бифуркаций становится континуальным: у некоторой группы сценариев появляется числовой инвариант.

В курсе мы построим «руками» явный пример («плачущее сердце») такого инварианта, придуманный меньше двух лет назад в совместной работе лектора, Ю. Кудряшова и И. Щурова.

Ильяшенко Юлий Сергеевич, доктор физико-математических наук, профессор.

Летняя школа «Современная математика», г. Дубна
24–25 июля 2016 г.
Комментарии: 0