Три взгляда на векторные поля
Аносов Дмитрий Викторович, доктор физико-математических наук, профессор, академик РАН.
Летняя школа «Современная математика», г. Дубна
15-16 июля 2001 г.
Похожее
-
Юлий Ильяшенко
Пусть на плоскости (или на прямой) задано векторное поле: в каждой точке нарисован вектор. Этому полю можно сопоставить дифференциальное уравнение: точка x(t) движется «по стрелочкам» – так, что dx/dt=v(x(t)) при всех t. Типичный вопрос теории динамических систем – описать качественное поведение решений при t→+∞. Скажем, решения могут стремиться к устойчивому положению равновесия, «наматываться» на периодическую траекторию («предельный цикл»), и так далее. Следующий вопрос – а что будет, если система зависит от параметра, и мы начинаем этот параметр менять? Как будет изменяться качественное поведение системы?
-
Дмитрий Аносов
Лекции читает Аносов Дмитрий Викторович, доктор физико-математических наук, профессор, академик РАН. Летняя школа «Современная математика», г. Дубна. 16-18 июля 2002 г.
-
Андрей Болибрух
В этих двух лекциях мы хотим рассказать вам о дифференциальных формах, расслоениях и связностях. Эти понятия сейчас активно используются в разных областях математики и физики, и нам хотелось бы хотя бы немного вас с ними познакомить. Для того чтобы наш рассказ не был излишне абстрактным, мы привязаться к такому физическому объекту, как электромагнитное поле, и показать вам как при попытке описания этого поля естественным путем возникают все перечисленные понятия.
-
Дмитрий Аносов
Теорема Шарковского, доказанная в 1960-х гг., даёт ответ на вопрос: как для непрерывного отображения отрезка в себя связано наличие периодических точек различных периодов? Эта теорема была первым общим результатом о динамических системах, получающихся при итерировании отображений отрезка в себя. Хотя эта «одномерная динамика» кажется чем-то весьма специальным, подобные отображения возникают в некоторых вопросах естествознания и техники, а также играют важную вспомогательную роль при чисто теоретических исследованиях более сложных динамических систем.
-
Дмитрий Аносов
Как геометрические соображения помогают понять свойства решений дифференциальных уравнений. С этим и связаны слова «то решаем, то рисуем» в названии лекции. Рассмотрено несколько физических примеров. На максимально упрощённом уровне рассказано о некоторых достижениях XX века, включая понимание механизма возникновения «хаоса» в поведении детерминированных объектов.
-
Дмитрий Аносов
Из курса математического анализа известно, что если функция имеет n производных, то n-я производная может даже не быть непрерывной; если функция имеет все производные, то она может все-таки не разлагаться в ряд Тейлора: он может расходиться или сходиться к другой функции. Удивительная особенность функций комплексного переменного состоит в том, что одна только дифференцируемость функции во всех точках ее области определения обеспечивает, что функция имеет все производные и разлагается в ряд Тейлора. Этот факт доказывается с использованием интегрального исчисления функций комплексного переменного, хотя по своей форме он относится к дифференциальному исчислению. В лекциях будет предложено другое доказательство того же факта. Оно обходится без специфического комплексного интегрирования и вообще опирается на “вещественные” сведения.
-
Квантовая механика, не говоря уже о квантовой теории поля, имеет репутацию странной, пугающей и контринтуитивной науки. В научном сообществе есть те, кто по сей день ее не признает. Однако же квантовая теория поля — единственная подтвержденная экспериментом теория, способная объяснить взаимодействие микрочастиц при низких энергиях. Почему это важно? Андрей Ковтун, студент МФТИ и сотрудник кафедры фундаментальных взаимодействий, рассказывает, как с помощью этой теории добраться до главных законов природы или придумать их самим.
-
Стандартной моделью сегодня принято называть теорию, наилучшим образом отражающую наши представления об исходном материале, из которого изначально построена Вселенная. Она же описывает, как именно материя образуется из этих базовых компонентов, и силы и механизмы взаимодействия между ними.
-
Дмитрий Аносов
В книге рассказывается о дифференциальных уравнениях. В одних случаях автор объясняет, как решаются дифференциальные уравнения, а в других—как геометрические соображения помогают понять свойства их решений. (С этим и связаны слова «то решаем, то рисуем» в названии книги.) Рассмотрено несколько физических примеров. На максимально упрощённом уровне рассказано о некоторых достижениях XX века, включая понимание механизма возникновения «хаоса» в поведении детерминированных объектов. Книга рассчитана на интересующихся математикой школьников старших классов. От них требуется лишь понимание смысла производной как мгновенной скорости.
-
Представьте себе электрические и магнитные поля. Что вы для этого сделали? Знаете ли вы, как это нужно сделать? И как я сам представляю себе электрическое и магнитное поля? Что я на самом деле при этом вижу? Что требуется от научного воображения? Отличается ли оно чем-то от попытки представить себе комнату, полную невидимых ангелов? Нет, это не похоже на такую попытку.
Далее >>>
|
|