Дифференциальные уравнения: не решаем, а рисуем
Как геометрические соображения помогают понять свойства решений дифференциальных уравнений. С этим и связаны слова «то решаем, то рисуем» в названии лекции. Рассмотрено несколько физических примеров. На максимально упрощённом уровне рассказано о некоторых достижениях XX века, включая понимание механизма возникновения «хаоса» в поведении детерминированных объектов.
Аносов Дмитрий Викторович — академик РАН, профессор, доктор физико-математических наук.
Летняя школа «Современная математика», г. Дубна
20-22 июля 2005 г.
Похожее
-
Дмитрий Аносов
В книге рассказывается о дифференциальных уравнениях. В одних случаях автор объясняет, как решаются дифференциальные уравнения, а в других—как геометрические соображения помогают понять свойства их решений. (С этим и связаны слова «то решаем, то рисуем» в названии книги.) Рассмотрено несколько физических примеров. На максимально упрощённом уровне рассказано о некоторых достижениях XX века, включая понимание механизма возникновения «хаоса» в поведении детерминированных объектов. Книга рассчитана на интересующихся математикой школьников старших классов. От них требуется лишь понимание смысла производной как мгновенной скорости.
-
Дмитрий Аносов
Теорема Шарковского, доказанная в 1960-х гг., даёт ответ на вопрос: как для непрерывного отображения отрезка в себя связано наличие периодических точек различных периодов? Эта теорема была первым общим результатом о динамических системах, получающихся при итерировании отображений отрезка в себя. Хотя эта «одномерная динамика» кажется чем-то весьма специальным, подобные отображения возникают в некоторых вопросах естествознания и техники, а также играют важную вспомогательную роль при чисто теоретических исследованиях более сложных динамических систем.
-
Дмитрий Аносов
Лекции читает Аносов Дмитрий Викторович, доктор физико-математических наук, профессор, академик РАН. Летняя школа «Современная математика», г. Дубна. 2001 г.
-
Дмитрий Аносов
Из курса математического анализа известно, что если функция имеет n производных, то n-я производная может даже не быть непрерывной; если функция имеет все производные, то она может все-таки не разлагаться в ряд Тейлора: он может расходиться или сходиться к другой функции. Удивительная особенность функций комплексного переменного состоит в том, что одна только дифференцируемость функции во всех точках ее области определения обеспечивает, что функция имеет все производные и разлагается в ряд Тейлора. Этот факт доказывается с использованием интегрального исчисления функций комплексного переменного, хотя по своей форме он относится к дифференциальному исчислению. В лекциях будет предложено другое доказательство того же факта. Оно обходится без специфического комплексного интегрирования и вообще опирается на “вещественные” сведения.
-
Дмитрий Аносов
Лекции читает Аносов Дмитрий Викторович, доктор физико-математических наук, профессор, академик РАН. Летняя школа «Современная математика», г. Дубна. 16-18 июля 2002 г.
-
Юлий Ильяшенко
Эволюционные процессы происходят повсюду вокруг нас — от движения атомов до движения планет. Ньютон понял, что эти процессы описываются дифференциальными уравнениями, и что эти уравнения полезно решать. В последующие полтора столетия стало ясно, что большинство дифференциальных уравнений решить нельзя. Пуанкаре создал новую ветвь математики — качественную или геометрическую теорию дифференциальных уравнений, которая изучает свойства решений непосредственно по уравнению, минуя попытки это уравнение решить. Оказалось, что даже на качественном уровне поведение решений может быть очень сложным. Ситуация резко упрощается, если «все» уравнения заменить на «типичные». С физической точки зрения интересны именно типичные дифференциальные уравнения. В лекциях будет рассказано об эволюции этих концепций и сформулированы некоторые нерешенные проблемы.
-
Наталия Гончарук
В каждой точке плоскости нарисуем вектор. Получилось векторное поле. Будем считать, что по плоскости течёт вода, а векторы — её скорости течения в разных точках. Теперь бросим в воду несколько щепок и нарисуем траектории их движения. Получится фазовый портрет векторного поля. По картинке стало видно, что происходит со щепками: некоторые приближаются к внешнему предельному циклу, от другого цикла все щепки отдаляются. Куда ещё могут накапливаться траектории щепок (теорема Пуанкаре-Бендиксона). Как ещё могут быть устроены фазовые портреты. Также мы обсудим бифуркации: перестройки фазовых портретов, когда векторное поле слегка меняется. Будут свежие результаты и открытые вопросы.
-
Юлий Ильяшенко
Как менялись наши представления об аттракторах? Чего мы ожидаем от аттракторов? Предполагается, что слушатели знают определение и свойства компактных множеств в евклидовом пространстве, а также знакомы с определениями и примерами гомеоморфизмов и диффеоморфизмов. Последние определения будут даны в курсе, но лучше знать их заранее.
-
Андрей Болибрух

В этих двух лекциях мы хотим рассказать вам о дифференциальных формах, расслоениях и связностях. Эти понятия сейчас активно используются в разных областях математики и физики, и нам хотелось бы хотя бы немного вас с ними познакомить. Для того чтобы наш рассказ не был излишне абстрактным, мы привязаться к такому физическому объекту, как электромагнитное поле, и показать вам как при попытке описания этого поля естественным путем возникают все перечисленные понятия.
-
Юлий Ильяшенко
Теория Колмогорова–Арнольда–Мозера отвечает на вопросы типа «Могут ли планеты упасть на Солнце? Если да, то с какой вероятностью? И через какое время?» Математическая постановка задачи: предположим, что массы столь малы, что их притяжением друг к другу можно пренебречь. Тогда траектории движения планет можно посчитать; это сделал ещё Ньютон. Если перейти к реальному случаю, когда взаимное притяжение планет влияет на их орбиты, получится малое возмущение интегрируемой, т.е. точно решаемой, системы. Исследование малых возмущений интегрируемых систем классической механики Пуанкаре считал основной задачей теории дифференциальных уравнений. В лекциях будет рассказано, на уровне, доступном старшим школьникам, об основных идеях теории КАМ. Мы не поднимемся до задачи n тел и классической механики, но обсудим диффеоморфизмы окружности и основной шаг индукционного процесса, предложенного Колмогоровым для задач небесной механики.
Далее >>>
|
|