Дифференциальные уравнения: не решаем, а рисуем
Как геометрические соображения помогают понять свойства решений дифференциальных уравнений. С этим и связаны слова «то решаем, то рисуем» в названии лекции. Рассмотрено несколько физических примеров. На максимально упрощённом уровне рассказано о некоторых достижениях XX века, включая понимание механизма возникновения «хаоса» в поведении детерминированных объектов.
Аносов Дмитрий Викторович — академик РАН, профессор, доктор физико-математических наук.
Летняя школа «Современная математика», г. Дубна
20-22 июля 2005 г.
Похожее
-
Дмитрий Аносов
В книге рассказывается о дифференциальных уравнениях. В одних случаях автор объясняет, как решаются дифференциальные уравнения, а в других—как геометрические соображения помогают понять свойства их решений. (С этим и связаны слова «то решаем, то рисуем» в названии книги.) Рассмотрено несколько физических примеров. На максимально упрощённом уровне рассказано о некоторых достижениях XX века, включая понимание механизма возникновения «хаоса» в поведении детерминированных объектов. Книга рассчитана на интересующихся математикой школьников старших классов. От них требуется лишь понимание смысла производной как мгновенной скорости.
-
Юлий Ильяшенко
Эволюционные процессы происходят повсюду вокруг нас — от движения атомов до движения планет. Ньютон понял, что эти процессы описываются дифференциальными уравнениями, и что эти уравнения полезно решать. В последующие полтора столетия стало ясно, что большинство дифференциальных уравнений решить нельзя. Пуанкаре создал новую ветвь математики — качественную или геометрическую теорию дифференциальных уравнений, которая изучает свойства решений непосредственно по уравнению, минуя попытки это уравнение решить. Оказалось, что даже на качественном уровне поведение решений может быть очень сложным. Ситуация резко упрощается, если «все» уравнения заменить на «типичные». С физической точки зрения интересны именно типичные дифференциальные уравнения. В лекциях будет рассказано об эволюции этих концепций и сформулированы некоторые нерешенные проблемы.
-
Юлий Ильяшенко
Как менялись наши представления об аттракторах? Чего мы ожидаем от аттракторов? Предполагается, что слушатели знают определение и свойства компактных множеств в евклидовом пространстве, а также знакомы с определениями и примерами гомеоморфизмов и диффеоморфизмов. Последние определения будут даны в курсе, но лучше знать их заранее.
-
Валерий Опойцев
Тематику дифференциальных уравнений, безусловно, надо расширять, иначе «молодые побеги» — хаос, аттракторы, солитоны — будут расти сквозь асфальт. С другой стороны, базовые курсы нуждаются в резком сокращении, поскольку для самих дифуров не так много места остается в этой жизни. Из-за информационного переполнения. При этом стандартных мер недостает. Единственное средство — тривиализация дисциплины. Математика, как и человек, — иногда надувает щеки, наряжается и творит мифы. Поэтому в дифурах немало лишнего, вычурного, случайного — и одно лишь наведение порядка высвобождает массу свободного места. Данный мини-курс адресован «всем», поскольку преподносит некую общую часть. Не простую и не сложную, но дающую представление об основах и позволяющую при необходимости быстро войти в предмет и двигаться дальше.
-
Уравнения Навье-Стокса при помощи нескольких лаконичных членов описывают одно из самых распространённых явлений физического мира: течение жидкостей. Эти уравнения используются для описания всего, от океанских течений и турбулентности, следующей за самолётом до потока крови в сердце. Хотя физики считают эти уравнения надёжными, как молоток, математики относятся к ним с недоверием. Для математика то, что эти уравнения вроде бы работают, мало что значит. Им нужны доказательства того, что уравнения безошибочны: что для любой жидкости и для долгосрочного прогноза, распространённого сколь угодно далеко в будущее, математика уравнений не подведёт.
-
В физике есть уравнения, описывающие всё, от растяжения пространства-времени до полёта фотона. Однако же лишь один набор уравнений считается настолько математически сложным, что его выбрали в роли одной из семи «Задач тысячелетия», за решение которых Математический институт Клэя предлагает премию в миллион долларов: это уравнения Навье-Стокса, описывающие течение жидкостей. Почему же эти уравнения, описывающие такие знакомые явления, как вода, текущая по шлангу, математически понять гораздо сложнее, чем, допустим, уравнения поля Эйнштейна, включающие в себя такие ошеломляющие объекты, как чёрные дыры? Ответ кроется в турбулентности. Это явление испытывали мы все, в полёте в неоднородном воздухе на высоте в 10000 м, или при наблюдении за воронкой от уходящей в слив воды в ванне. Однако из осведомлённости не следует познание: турбулентность — одна из наименее понятных областей физического мира.
-
Дмитрий Аносов
Теорема Шарковского, доказанная в 1960-х гг., даёт ответ на вопрос: как для непрерывного отображения отрезка в себя связано наличие периодических точек различных периодов? Эта теорема была первым общим результатом о динамических системах, получающихся при итерировании отображений отрезка в себя. Хотя эта «одномерная динамика» кажется чем-то весьма специальным, подобные отображения возникают в некоторых вопросах естествознания и техники, а также играют важную вспомогательную роль при чисто теоретических исследованиях более сложных динамических систем.
-
Дмитрий Аносов
Лекции читает Аносов Дмитрий Викторович, доктор физико-математических наук, профессор, академик РАН. Летняя школа «Современная математика», г. Дубна. 2001 г.
-
Дмитрий Аносов
Из курса математического анализа известно, что если функция имеет n производных, то n-я производная может даже не быть непрерывной; если функция имеет все производные, то она может все-таки не разлагаться в ряд Тейлора: он может расходиться или сходиться к другой функции. Удивительная особенность функций комплексного переменного состоит в том, что одна только дифференцируемость функции во всех точках ее области определения обеспечивает, что функция имеет все производные и разлагается в ряд Тейлора. Этот факт доказывается с использованием интегрального исчисления функций комплексного переменного, хотя по своей форме он относится к дифференциальному исчислению. В лекциях будет предложено другое доказательство того же факта. Оно обходится без специфического комплексного интегрирования и вообще опирается на “вещественные” сведения.
-
Дмитрий Аносов
Лекции читает Аносов Дмитрий Викторович, доктор физико-математических наук, профессор, академик РАН. Летняя школа «Современная математика», г. Дубна. 16-18 июля 2002 г.
Далее >>>
|
|