Дифференциальные уравнения: то решаем, то рисуем
Аносов Д. В. Дифференциальные уравнения: то решаем, то рисуем — М.: МЦНМО, 2008. —200 с.
В книге рассказывается о дифференциальных уравнениях. В одних случаях автор объясняет, как решаются дифференциальные уравнения, а в других—как геометрические соображения помогают понять свойства их решений. (С этим и связаны слова «то решаем, то рисуем» в названии книги.) Рассмотрено несколько физических примеров. На максимально упрощённом уровне рассказано о некоторых достижениях XX века, включая понимание механизма возникновения «хаоса» в поведении детерминированных объектов.
Книга рассчитана на интересующихся математикой школьников старших классов. От них требуется лишь понимание смысла производной как мгновенной скорости. Книга не заменяет вузовские учебники, но так как в ней затрагиваются и не освещаемые в них вопросы, а часть других вопросов освещается иначе, то она может заинтересовать и студентов вузов со значительной математической программой.
Скачать: [pdf 1.73 MB]
Похожее
-
Дмитрий Аносов
Как геометрические соображения помогают понять свойства решений дифференциальных уравнений. С этим и связаны слова «то решаем, то рисуем» в названии лекции. Рассмотрено несколько физических примеров. На максимально упрощённом уровне рассказано о некоторых достижениях XX века, включая понимание механизма возникновения «хаоса» в поведении детерминированных объектов.
-
Юлий Ильяшенко
Эволюционные процессы происходят повсюду вокруг нас — от движения атомов до движения планет. Ньютон понял, что эти процессы описываются дифференциальными уравнениями, и что эти уравнения полезно решать. В последующие полтора столетия стало ясно, что большинство дифференциальных уравнений решить нельзя. Пуанкаре создал новую ветвь математики — качественную или геометрическую теорию дифференциальных уравнений, которая изучает свойства решений непосредственно по уравнению, минуя попытки это уравнение решить. Оказалось, что даже на качественном уровне поведение решений может быть очень сложным. Ситуация резко упрощается, если «все» уравнения заменить на «типичные». С физической точки зрения интересны именно типичные дифференциальные уравнения. В лекциях будет рассказано об эволюции этих концепций и сформулированы некоторые нерешенные проблемы.
-
Валерий Опойцев
Тематику дифференциальных уравнений, безусловно, надо расширять, иначе «молодые побеги» — хаос, аттракторы, солитоны — будут расти сквозь асфальт. С другой стороны, базовые курсы нуждаются в резком сокращении, поскольку для самих дифуров не так много места остается в этой жизни. Из-за информационного переполнения. При этом стандартных мер недостает. Единственное средство — тривиализация дисциплины. Математика, как и человек, — иногда надувает щеки, наряжается и творит мифы. Поэтому в дифурах немало лишнего, вычурного, случайного — и одно лишь наведение порядка высвобождает массу свободного места. Данный мини-курс адресован «всем», поскольку преподносит некую общую часть. Не простую и не сложную, но дающую представление об основах и позволяющую при необходимости быстро войти в предмет и двигаться дальше.
-
В физике есть уравнения, описывающие всё, от растяжения пространства-времени до полёта фотона. Однако же лишь один набор уравнений считается настолько математически сложным, что его выбрали в роли одной из семи «Задач тысячелетия», за решение которых Математический институт Клэя предлагает премию в миллион долларов: это уравнения Навье-Стокса, описывающие течение жидкостей. Почему же эти уравнения, описывающие такие знакомые явления, как вода, текущая по шлангу, математически понять гораздо сложнее, чем, допустим, уравнения поля Эйнштейна, включающие в себя такие ошеломляющие объекты, как чёрные дыры? Ответ кроется в турбулентности. Это явление испытывали мы все, в полёте в неоднородном воздухе на высоте в 10000 м, или при наблюдении за воронкой от уходящей в слив воды в ванне. Однако из осведомлённости не следует познание: турбулентность — одна из наименее понятных областей физического мира.
-
Уравнения Навье-Стокса при помощи нескольких лаконичных членов описывают одно из самых распространённых явлений физического мира: течение жидкостей. Эти уравнения используются для описания всего, от океанских течений и турбулентности, следующей за самолётом до потока крови в сердце. Хотя физики считают эти уравнения надёжными, как молоток, математики относятся к ним с недоверием. Для математика то, что эти уравнения вроде бы работают, мало что значит. Им нужны доказательства того, что уравнения безошибочны: что для любой жидкости и для долгосрочного прогноза, распространённого сколь угодно далеко в будущее, математика уравнений не подведёт.
-
Юлий Ильяшенко
Как менялись наши представления об аттракторах? Чего мы ожидаем от аттракторов? Предполагается, что слушатели знают определение и свойства компактных множеств в евклидовом пространстве, а также знакомы с определениями и примерами гомеоморфизмов и диффеоморфизмов. Последние определения будут даны в курсе, но лучше знать их заранее.
-
Дмитрий Аносов
Лекции читает Аносов Дмитрий Викторович, доктор физико-математических наук, профессор, академик РАН. Летняя школа «Современная математика», г. Дубна. 16-18 июля 2002 г.
-
Провернувшись несколько кругов с колесом, куда полетит камень, когда выскочит из протектора? Против направления движения мотоцикла или по направлению? Как известно, свободное движение тела начинается по касательной к той траектории, по которой оно двигалось. Касательная к циклоиде всегда направлена по направлению движения и проходит через верхнюю точку производящей окружности. По направлению движения полетит и наш камушек. Помните, как Вы катались в детстве по лужам на велосипеде без заднего крыла? Мокрая полоска на вашей спине является житейским подтверждением только что полученного результата.
-
Дмитрий Аносов
Теорема Шарковского, доказанная в 1960-х гг., даёт ответ на вопрос: как для непрерывного отображения отрезка в себя связано наличие периодических точек различных периодов? Эта теорема была первым общим результатом о динамических системах, получающихся при итерировании отображений отрезка в себя. Хотя эта «одномерная динамика» кажется чем-то весьма специальным, подобные отображения возникают в некоторых вопросах естествознания и техники, а также играют важную вспомогательную роль при чисто теоретических исследованиях более сложных динамических систем.
-
Дмитрий Аносов
Лекции читает Аносов Дмитрий Викторович, доктор физико-математических наук, профессор, академик РАН. Летняя школа «Современная математика», г. Дубна. 2001 г.
Далее >>>
|
|