Теория Колмогорова–Арнольда–Мозера отвечает на вопросы типа «Могут ли планеты упасть на Солнце? Если да, то с какой вероятностью? И через какое время?» Математическая постановка задачи: предположим, что массы столь малы, что их притяжением друг к другу можно пренебречь. Тогда траектории движения планет можно посчитать; это сделал ещё Ньютон. Если перейти к реальному случаю, когда взаимное притяжение планет влияет на их орбиты, получится малое возмущение интегрируемой, т.е. точно решаемой, системы. Исследование малых возмущений интегрируемых систем классической механики Пуанкаре считал основной задачей теории дифференциальных уравнений.
Колмогоров предположил, что «большинство» решений возмущённой системы имеет во многом такие же свойства, как и решения невозмущённой. Он предложил стратегию доказательства этого факта. Замысел Колмогорова независимо осуществили и расширили Арнольд и Мозер. Так возникла теория КАМ. Её область применений далеко выходит за рамки задач небесной механики. В частности, теория КАМ позволяет доказать, что «большинство диффеоморфизмов (т.е. отображений, гладких вместе с обратным) окружности на себя в определённом смысле являются простыми поворотами». Этому приложению была посвящена первая работа Арнольда по теории КАМ с подзаголовком «Малые знаменатели I».
В лекциях будет рассказано, на уровне, доступном старшим школьникам, об основных идеях теории КАМ. Мы не поднимемся до задачи n тел и классической механики, но обсудим диффеоморфизмы окружности и основной шаг индукционного процесса, предложенного Колмогоровым для задач небесной механики.
Ильяшенко Юлий Сергеевич, профессор, доктор физико-математических наук.
Летняя школа «Современная математика», г. Дубна
24 июля 2010 г.
Если поступить очень жестоко и отобрать у математика карандаш и бумагу, он будет смотреть на небо в поисках новых задач. Вопрос о движении планет (в математическом мире встречающийся под кодовым названием «Задача n тел») является чрезвычайно сложным — настолько сложным, что даже для специальных подслучаев случая n=3 каждый год публикуется огромное количество работ. Разобрать все аспекты этой задачи невозможно даже за семестровый курс. Мы, однако, не испугаемся, и попробуем поиграться в математику, которая здесь возникает. Основной мотивацией для нас будет задача двух тел: задача о движении одной планеты вокруг Солнца в предположении о том, что как будто бы никаких других планет в округе нет.
Иоганн Кеплер обладал чувством прекрасного. Всю свою сознательную жизнь он пытался доказать, что Солнечная система представляет собой некое мистическое произведение искусства. Сначала он пытался связать ее устройство с пятью правильными многогранниками классической древнегреческой геометрии. Во времена Кеплера было известно шесть планет, которые, как полагалось, помещались на вращающихся «хрустальных сферах». Кеплер утверждал, что эти сферы расположены таким образом, что между соседними сферами точно вписываются правильные многогранники. Увы, сравнив свою модель с наблюдаемыми орбитами планет, Кеплер вынужден был признать, что реальное поведение небесных тел не вписывается в очерченные им стройные рамки.
В Солнечной системе, вероятно, есть еще одна чрезвычайно удаленная планета размером с Нептун, совершающая один оборот вокруг Солнца за 10–20 тысяч лет. Сенсационную статью на эту тему опубликовали 20 января два уважаемых планетолога, Константин Батыгин и Майк Браун из Калифорнийского технологического института, проводившие детальный анализ орбит уже известных нам транснептуновых объектов. Они готовы предъявить скептикам результаты многомесячного компьютерного моделирования.
Эволюционные процессы происходят повсюду вокруг нас — от движения атомов до движения планет. Ньютон понял, что эти процессы описываются дифференциальными уравнениями, и что эти уравнения полезно решать. В последующие полтора столетия стало ясно, что большинство дифференциальных уравнений решить нельзя. Пуанкаре создал новую ветвь математики — качественную или геометрическую теорию дифференциальных уравнений, которая изучает свойства решений непосредственно по уравнению, минуя попытки это уравнение решить. Оказалось, что даже на качественном уровне поведение решений может быть очень сложным. Ситуация резко упрощается, если «все» уравнения заменить на «типичные». С физической точки зрения интересны именно типичные дифференциальные уравнения. В лекциях будет рассказано об эволюции этих концепций и сформулированы некоторые нерешенные проблемы.
Как менялись наши представления об аттракторах? Чего мы ожидаем от аттракторов? Предполагается, что слушатели знают определение и свойства компактных множеств в евклидовом пространстве, а также знакомы с определениями и примерами гомеоморфизмов и диффеоморфизмов. Последние определения будут даны в курсе, но лучше знать их заранее.
На склоне своих дней Исаак Ньютон рассказал, как это произошло: он гулял по яблоневому саду в поместье своих родителей и вдруг увидел луну в дневном небе. И тут же на его глазах с ветки оторвалось и упало на землю яблоко. Поскольку Ньютон в это самое время работал над законами движения, он уже знал, что яблоко упало под воздействием гравитационного поля Земли. Знал он и о том, что Луна не просто висит в небе, а вращается по орбите вокруг Земли, и, следовательно, на нее воздействует какая-то сила, которая удерживает ее от того, чтобы сорваться с орбиты и улететь по прямой прочь, в открытый космос. Тут ему и пришло в голову, что, возможно, это одна и та же сила заставляет и яблоко падать на землю, и Луну оставаться на околоземной орбите.
Лекция академика РАН, доктора физико-математических наук, председателя научного совета РАН по нелинейной динамике, зав. Сектором математической физики в Физическом институте РАН им. Лебедева, профессора Университета Аризоны (США), дважды лауреата Государственной премии, лауреата медали Дирака Владимира Евгеньевича Захарова, прочитанной 27 мая 2010 года в Политехническом музее в рамках проекта “Публичные лекции Полит.ру”.
Провернувшись несколько кругов с колесом, куда полетит камень, когда выскочит из протектора? Против направления движения мотоцикла или по направлению? Как известно, свободное движение тела начинается по касательной к той траектории, по которой оно двигалось. Касательная к циклоиде всегда направлена по направлению движения и проходит через верхнюю точку производящей окружности. По направлению движения полетит и наш камушек. Помните, как Вы катались в детстве по лужам на велосипеде без заднего крыла? Мокрая полоска на вашей спине является житейским подтверждением только что полученного результата.
Хаос — математический фильм, состоящий из девяти глав, по тринадцать минут каждая. Это фильм для широкой публики, посвященный динамическим системам, эффекту бабочки и теории хаоса.