Начав с основной теоремы арифметики, мы расскажем про АВС-гипотезу, которая была сформулирована в 1985 году и быстро стала одной из центральных проблем в теории чисел из-за её связей с другими нерешёнными задачами, а также из-за того, что многие уже доказанные известные результаты были бы её следствиями.
Дмитрий Олегович Орлов — член-корреспондент РАН, доктор физико-математических наук.
Популярные лекции по математике и смежным наукам
LXXVII Mосковская математическая олимпиада, МГУ им. М.В. Ломоносова.
Математический институт им. В. А. Стеклова РАН.
23 марта 2014 г.
В прошлом двадцатом веке случилось событие, равного по масштабу которого в математике не было за всю ее историю. 19-го сентября 1994 года была доказана теорема, сформулированная Пьером де Ферма (1601-1665) более 350-ти лет назад в 1637 году. Она известна также как «последняя теорема Ферма» или как «большая теорема Ферма», поскольку есть еще так называемая "малая теорема Ферма". Ее доказал 41-летний, до этого момента в математическом сообществе ничем особо непримечательный, и по математическим меркам уже немолодой, профессор Принстонского университета Эндрю Уайлс. Удивительно, что про это событие толком не знают не только наши обычные российские обыватели, но и многие интересующиеся наукой люди, включая даже немалое число ученых в России, так или иначе использующих математику.
В этой книге говориться о математике как о части культуры духовной. Данный текст писался не для математиков, а скорее для гуманитариев. Поэтому при его составлении в ряде случаев приходилось выбирать между понятностью и точностью. Предпочтение отдавалось понятности. Очерчивая место математики в современной культуре, автор пытается прояснить для читателей-нематематиков некоторые основные понятия и проблемы «царицы наук».
Когда Гаусс написал в 1801 г., что «Проблема различения простых и составных чисел и разложения последних на простые сомножители, как известно, является одной из самых важных и полезных в арифметике» он не знал, что 200 лет спустя эта проблема будет иметь огромное значение для криптографии: ее приложениями каждый день пользуются миллионы людей. Мы обсудим, как проверить простоту целых чисел детерминированными и вероятностными алгоритмами. От слушателей потребуется знакомство с арифметикой вычетов, включая малую теорему Ферма.
Мир математики немыслим без них – без простых чисел. Что такое простые числа, что в них особенного и какое значение они имеют для повседневной жизни? В этом фильме британский профессор математики Маркус дю Сотой откроет тайну простых чисел.
ABC-гипотеза была сформулирована в 1985 г. и быстро стала центральной проблемой в теории чисел из-за её связей с другими нерешёнными проблемами, а также из-за того, что многие уже доказанные известные результаты были бы её следствиями. В 2012 году японский математик Мотидзуки выложил доказательство ABC-гипотезы в интернете, но математическое сообщество еще не пришло к единому мнению, правильно ли оно. В курсе мы введём ABC-гипотезу, опишем несколько эквивалентных её вариантов, и проследим ее связи с другими проблемами и теоремами в теории чисел. От слушателей потребуется знакомство с арифметикой вычетов и многочленами над полями.
И целые числа, и многочлены (от одной переменной с коэффициентами в Q, R или Z/pZ) можно делить с остатком. Эта и подобные аналогии в структуре целых чисел и многочленов играли и продолжают играть важную роль в математике, особенно в теории чисел. В этом курсе мы исследуем такие аналогии в контексте теории чисел: на примере непрерывных дробей, уравнения Пелля, квадратичных вычетов, и abc-гипотезы. От слушателей требуется знакомство с пределами и арифметикой вычетов.
Простые числа — это целые числа больше единицы, которые не могут быть представлены как произведение двух меньших чисел. Если у вас есть несколько монет, но вы не можете расположить их все в форме прямоугольника, а можете только выстроить их в прямую линию, ваше число монет — это простое число. Математик Джеймс Мэйнард о теореме Евклида, гипотезе Римана и современных исследованиях тайн простых чисел.
Продолжительность циклов большинства цикад не случайна, а представляет собой интервалы из простых чисел (чисел, делимых без остатка только на себя — 3, 5, 7, 11, 13, 17 и т. д.), являясь наиболее действенной стратегией выживания и размножения.
В математике чрезвычайно редко случается, чтобы учёный старше 40 лет опубликовал первую серьёзную научную работу. Ещё реже бывает, чтобы эта работа имела большую научную ценность. Именно такой редчайший случай представляет из себя доцент университета Нью-Гэмпшира Итан Чжан (Yitang Zhang), который до сих не имеет ни должности профессора, ни веб-странички со списком научных работ. Тем не менее, ему удалось совершить серьёзный шаг к решению одной из старейших математических проблем — гипотезе о простых числах-близнецах.
Математик предлагает продать душу дьяволу за то, чтобы тот доказал или опроверг теорему Ферма. Режиссер: Семен Райтбурт В ролях: В. Шестаков, А. Кайдановский, А. Покровская СССР, 1972 г.