Десятая проблема Гильберта: что можно и что нельзя делать с диофантовыми уравнениями
В 1900 году великий немецкий математик Давид Гильберт сформулировал свои знаменитые Математические проблемы. В десятой из них он просил найти алгоритм для распознавания наличия решений у произвольных диофантовых уравнений. Семьдесят лет спустя было установлено, что такого алгоритма не существует.
Техника, развитая для доказательства этого, позволила получить ещё много интересных результатов, например, построить многочлен с целыми коэффициентами, множество всех положительных значений которого (принимаемых при произвольных целочисленных значениях переменных) есть в точности множество всех простых чисел.
Мини-курс будет состоять из трёх частей.
В первой обзорной лекции будет рассказано об истории 10-й проблемы Гильберта, даны необходимые определения и сформулированы полученные результаты.
На протяжении трех последующих лекций будет дано полное подробное доказательство промежуточного результата — невозможности алгоритма для распознавания наличия решений у более сложных экспоненциально диофантовых уравнений.
Остающееся звено — переход от экспоненциально диофантовых уравнений к чисто диофантовым уравнениям — желающие смогут найти самостоятельно в ходе решения серии предложенных им теоретико-числовых задач. Если решивших будет достаточно много, можно будет организовать коллективное обсуждение завершающей фазы отрицательного решения 10-й проблемы Гильберта.
Матиясевич Юрий Владимирович, доктор физико-математических наук, профессор, академик РАН.
Летняя школа «Современная математика», г. Дубна
22–28 июля 2011 г.
Похожее
-
В математике полно странных числовых систем, о которых большинство людей никогда не слышало. Некоторые из них даже сложно будет представить. Но рациональные числа знакомы всем. Это числа для счёта предметов и дроби — все числа, известные нам с начальной школы. Но в математике иногда сложнее всего понять самые простые вещи. Они простые, как гладкая стена, без трещин и выступов, или других очевидных свойств, за которые можно было бы ухватиться. Выдающийся математик раскрыл подробности того, как его успехи в изучении тысячелетних математических вопросов связаны с концепциями, взятыми из физики
-
Юрий Матиясевич
Наряду с привнесением революционных идей в информатику, искусственный интеллект и биологию, Тьюринг внес существенный вклад и в такой традиционный раздел математики, как теория чисел. К сожалению, даже о сaмом существовании таких исследований Тьюринга за пределами круга теоретико-числовиков известно немногим. Все опубликованные Тьюрингом работы по теории чисел связаны с одним, но фундаментальным вопросом этой области математики — распределением простых чисел. В частности, Тьюринг предложил метод для проверки справедливости гипотезы Римана для начальных нулей дзета функции Римана. Этот метод остается основным и при всех современных вычислениях на суперкомпьютерах. Тьюринг также изобрел механическое устройство для вычисления нулей дзета функции, получил грант на его реализацию, но эта работа была прервана войной и никогда не закончена.
-
Юрий Матиясевич
Гипотеза Римана может быть сформулирована как утверждение об определителях некоторых матриц, элементы которых задаются через коэффициенты разложения дзета-функции Римана в ряд Тейлора. Оказалось, что в распределении собственных чисел этих матриц можно увидеть некоторые закономерности, позволяющие сформулировать новые гипотезы. В докладе будет показано много «картинок» и компьютерная анимация, раскрывающая «тайную жизнь дзета-функции Римана».
-
Юрий Матиясевич
Метод координат, придуманный Рене Декартом, позволяет переформулировать любую задачу «на доказательство» из элементарной (грубо говоря, «школьной») геометрии в виде высказывания о вещественных числах. А что делать потом? Ведь уже для корней алгебраических уравнений пятой степени с одной неизвестной не существует явной формулы «в радикалах», а при переводе геометрических утверждений на алгебраический язык будут возникать сложные утверждения, содержащие много переменных, связанных как кванторами существования (это «неизвестные»), так и кванторами общности (это «параметры»). К счастью, польский логик и математик Альфред Тарский нашел в сороковые годы двадцатого столетия универсальный метод, позволяющий узнавать истинность или ложность любого высказывания про конечное множество вещественных чисел. Первоначальное авторское изложение этого метода занимало целую книгу и было очень трудно для восприятия. С тех пор многие авторы упрощали метод Тарского, и сегодня этот замечательный результат может быть доказан со всеми деталями за два часа и, надеюсь, понят старшеклассниками и младшекурсниками.
-
Александр Веселов
Лекцию читает Веселов Александр Петрович. Летняя школа «Современная математика», г. Дубна. 22 июля 2017 г.
-
Александр Буфетов, Никита Козин
Диаграммы Юнга дают естественный способ параметризовать разбиение натурального числа в сумму невозрастающих слагаемых. Вопросом о количестве диаграмм Юнга с данным числом клеток занимался еще Эйлер.
-
Владимир Успенский
Если разбить натуральный ряд на конечное число частей, то в одной из этих частей содержатся сколь угодно длинные арифметические прогрессии (теорема ван дер Вардена). Теорема Семереди усиливает теорему ван дер Вардена: если некоторые натуральные числа покрашены в зеленый цвет и при этом существуют сколь угодно длинные отрезки натурального ряда, в которых доля зеленых чисел составляет не менее одного процента (или любой другой положительной константы), то существуют сколь угодно длинные арифметические прогрессии, состоящие из зеленых чисел. Замечательное доказательство теоремы Семереди, предложенное Фюрстенбергом, основано на эргодической теории. Эта теория изучает преобразования, сохраняющие меру, и поведение таких преобразований при итерациях. В курсе будут изложены основные идеи доказательства Фюрстенберга.
-
Keith Conrad
Для каждого простого p существует нормирование на поле рациональных чисел, пополнение относительно которого называется p-адическими числами. Эти пополнения играют важную роль в теории чисел и смежных областях математики. В этом курсе мы узнаем, что такое p-адические числа, и обсудим несколько элементарных применений к задачам алгебры и теории чисел. От слушателей потребуется знакомство с арифметикой вычетов и пополнением метрического пространствa.
-
Александр Веселов
Рассмотрим квадратичную форму Q от двух переменных с целыми коэффициентами и зададимся вопросом, какие значения она может принимать на целочисленной решетке. В частном случае стандартной евклидовой формы это классический вопрос о том, когда заданное натуральное число представляется как сумма двух квадратов, исследованный Гауссом. Около 20 лет назад английский математик Джон Конвей предложил геометрический подход к этому вопросу, используя плоское бинарное дерево. Получаемое описание называется топографом формы. В случае когда форма принимает как положительные, так и отрицательные значения, они разделяются бесконечным путем на этом дереве, называемым рекой Конвея. Я расскажу, как река Конвея связана с парусом Арнольда из геометрической теории цепных дробей на целочисленной решетке, восходящей к Клейну.
-
Алексей Буфетов
Цель данного курса — показать, как вероятностные методы и интуиция помогают отвечать на теоретико-числовые вопросы. Я расскажу про два существенно разных сюжета. 1) Верно ли, что простых чисел-близнецов бесконечно много? Верно ли, что любое четное число раскладывается в сумму двух простых? Ответы на эти вопросы, формально говоря, еще не получены. Однако, существуют правдоподобные гипотезы, дающие куда более точную информацию. 2) Типичное число простых множителей натурального числа. Пусть w(n) — число различных простых делителей натурального числа n. Выберем n равномерно случайно из {1,2,…,N} для большого N. Чему равно типичное значение w(n)? На этом материале мы познакомимся с базовыми теоремами теории вероятностей: законом больших чисел и центральной предельной теоремой.
Далее >>>
|
|