Нынешний 2012 год — год столетия со дня рождения Алана Матисона Тьюринга. Наряду с привнесением революционных идей в информатику, искусственный интеллект и биологию, Тьюринг внес существенный вклад и в такой традиционный раздел математики, как теория чисел. К сожалению, даже о сaмом существовании таких исследований Тьюринга за пределами круга теоретико-числовиков известно немногим.
Все опубликованные Тьюрингом работы по теории чисел связаны с одним, но фундаментальным вопросом этой области математики — распределением простых чисел. В частности, Тьюринг предложил метод для проверки справедливости гипотезы Римана для начальных нулей дзета функции Римана. Этот метод остается основным и при всех современных вычислениях на суперкомпьютерах.
Тьюринг также изобрел механическое устройство для вычисления нулей дзета функции, получил грант на его реализацию, но эта работа была прервана войной и никогда не закончена.
Доклад рассчитан на широкую аудиторию, специальных знаний по теории чисел не предполагается.
Матиясевич Юрий Владимирович, доктор физико-математических наук, профессор, академик РАН.
Заседания Санкт-Петербургского математического общества
9 октября 2012 г.
Гипотеза Римана может быть сформулирована как утверждение об определителях некоторых матриц, элементы которых задаются через коэффициенты разложения дзета-функции Римана в ряд Тейлора. Оказалось, что в распределении собственных чисел этих матриц можно увидеть некоторые закономерности, позволяющие сформулировать новые гипотезы. В докладе будет показано много «картинок» и компьютерная анимация, раскрывающая «тайную жизнь дзета-функции Римана».
В 1900 году великий немецкий математик Давид Гильберт сформулировал свои знаменитые Математические проблемы. В десятой из них он просил найти алгоритм для распознавания наличия решений у произвольных диофантовых уравнений. Семьдесят лет спустя было установлено, что такого алгоритма не существует. Техника, развитая для доказательства этого, позволила получить ещё много интересных результатов, например, построить многочлен с целыми коэффициентами, множество всех положительных значений которого (принимаемых при произвольных целочисленных значениях переменных) есть в точности множество всех простых чисел.
Профессор Оксфордского университета Маркус Дю Сотой является действительным членом Американского математического общества и работает с теорией групп и теорией чисел. У Алана Дейвиса в школе была тройка по математике, у Маркус Дю Сотой — крепкая пятерка с большим плюсом. Их объединяет только одно: они оба болеют за "Арсенал". Профессор Дю Сотой берется объяснить Алану Дейвису и широкой публике, как математика помогает нам понять окружающий мир. Он знакомит его и зрителей с математическими принципами, которые способны расширить сознание и изменить представление о реальности. Задания для Дейвиса будут усложняться, пока не будет задан главный вопрос, который изменит отношение Алана и зрителей к Вселенной.
Метод координат, придуманный Рене Декартом, позволяет переформулировать любую задачу «на доказательство» из элементарной (грубо говоря, «школьной») геометрии в виде высказывания о вещественных числах. А что делать потом? Ведь уже для корней алгебраических уравнений пятой степени с одной неизвестной не существует явной формулы «в радикалах», а при переводе геометрических утверждений на алгебраический язык будут возникать сложные утверждения, содержащие много переменных, связанных как кванторами существования (это «неизвестные»), так и кванторами общности (это «параметры»). К счастью, польский логик и математик Альфред Тарский нашел в сороковые годы двадцатого столетия универсальный метод, позволяющий узнавать истинность или ложность любого высказывания про конечное множество вещественных чисел. Первоначальное авторское изложение этого метода занимало целую книгу и было очень трудно для восприятия. С тех пор многие авторы упрощали метод Тарского, и сегодня этот замечательный результат может быть доказан со всеми деталями за два часа и, надеюсь, понят старшеклассниками и младшекурсниками.
Математики из Университета Техаса в Остине с помощью компьютерных методов решили задачу о булевых пифагоровых тройках. Полная запись решения занимает около 200 терабайт, что делает его самым большим доказательством из существующих. На решение задачи ушло два дня непрерывной работы 800-процессорного суперкомпьютера.
RSA (аббревиатура от фамилий Rivest, Shamir и Adleman) — криптографический алгоритм с открытым ключом, основывающийся на вычислительной сложности задачи факторизации больших целых чисел. Алгоритм используется в большом числе криптографических приложений, включая PGP, S/MIME, TLS/SSL, IPSEC/IKE и других.
Простые числа — это целые числа больше единицы, которые не могут быть представлены как произведение двух меньших чисел. Если у вас есть несколько монет, но вы не можете расположить их все в форме прямоугольника, а можете только выстроить их в прямую линию, ваше число монет — это простое число. Математик Джеймс Мэйнард о теореме Евклида, гипотезе Римана и современных исследованиях тайн простых чисел.
Давайте рассмотрим последовательность чисел, первое из которых равно 1, а каждое последующее вдвое больше: 1, 2, 4, 8, 16, … Называется она вполне ожидаемо: последовательность степеней двойки. Казалось бы, ничего выдающегося в ней нет — последовательность как последовательность, не лучше и не хуже других. Тем не менее, она обладает весьма примечательными свойствами.
Продолжительность циклов большинства цикад не случайна, а представляет собой интервалы из простых чисел (чисел, делимых без остатка только на себя — 3, 5, 7, 11, 13, 17 и т. д.), являясь наиболее действенной стратегией выживания и размножения.