Пространства Тейхмюллера
В центре внимания курса — поверхность рода g (т.е. сфера с g ручками). С ней связана замечательная тройка, которую мы собираемся изучать, сделав акцент на первых двух объектах:
- Группа классов отображений (т.е. модулярная группа поверхности),
- Пространство Тейхмюллера,
- Пространство модулей алгебраических кривых.
В простых словах, о чем этот курс? Если у (обычного плоского) квадрата склеить противолежащие стороны, то получится тор с плоской метрикой, то есть каждый достаточно малый участок тора будет устроен как кусочек евклидовой плоскости. Если квадрат заменить на прямоугольник или параллелограмм, аналогичная склейка тоже даст тор с плоской метрикой, но про него разумно сказать — это другой тор, не изометричный первому. Здесь история о поверхностях с плоской метрикой заканчивается, так как никакую другую поверхность (с плоской метрикой) кроме этих торов из куска евклидовой плоскости склеить нельзя.
Поэтому мы евклидову плоскость заменим на плоскость Лобачевского (с ней больше свободы!) и определим пространство Тейхмюллера как пространство, элементы которого суть все возможные способы склеить поверхность рода g из гиперболической развертки, то есть, из некоторого куска гиперболической плоскости.
Программа курса:
- Необходимые сведения из геометрии Лобачевского «для пользователей». Плоскость Лобачевского как универсальное накрытие поверхности.
- Диффеоморфизмы поверхности, модулярная группа. Ее образующие — скручивания Дена: режем, скручиваем, клеим.
- Склейки гиперболических многоугольников. Пространство Тейхмюллера. Разрезание поверхности на штаны. Штаны дадут нам координаты Фенхеля-Нильсена на пространстве Тейхмюллера.
- Пространство Тейхмюллера поверхности с проколами. В присутствии гиперболической метрики проколы превращаются в рога, уходящие на бесконечность, и значит, дают штаны бесконечной длины. Декорированное пространство Тейхмюллера. Лямбда-длины Пеннера.
Требования к слушателям: Необходимо знакомство с понятием «группа», «действие группы», «комплексные числа». Приветствуется знакомство с плоскостью Лобачевского и с понятием универсального накрытия.
Панина Гаянэ Юрьевна, доктор физико-математических наук.
Летняя школа «Современная математика», г. Дубна
20-26 июля 2017 г.
Похожее
-
Гаянэ Панина
Некоторые комбинаторные схемы дают на выходе интересные выпуклые многогранники, имеющие отношение много к чему из современной математики. Перестановки дают пермутоэдр (перестановочный многогранник). Где он может пригодиться? (Конфигурационное пространство шарнирного многоугольника). Скобочные последовательности дают ассоциэдр (многогранник Сташефа). Зачем он нужен? («Чудесная» компактификация де Кончини–Прочезе.) Вторичный многогранник (secondary polytope Гельфанда–Капранова–Зелевинского) связан с совершенно иной комбинаторной схемой, и при этом обобщает предыдущие примеры.
-
Гаянэ Панина
Как мы узнаем, выпуклые многогранники можно складывать и перемножать между собой. Далее, выпуклые многогранники можно умножать на рациональные числа. И наконец, что несколько неожиданно, для выпуклых многогранников можно определить логарифм и экспоненту. Вооружившись этими умениями, мы построим математически богатый замечательный объект — градуированную алгебру над Q — алгебру многогранников Питера Мак Маллена. С помощью этой алгебры мы докажем теорему об f-векторе выпуклого многогранника. Эта алгебра хорошо «отражается» в теории алгебраических торических многообразий.
-
Гаянэ Панина
Курс представляет собой букет из трёх очень старых и трёх очень новых идей. Основной объект — число целых (т.е. с целыми координатами) точек в многограннике. Зачем нужны целые точки? Несколько примеров: многогранник Ньютона, Теорема Бриона — для начала без доказательства, просто в качестве фокуса, а также подсчёт целых метрических ленточных графов. Число целых точек в выпуклом многограннике ведёт себя как полином. Согласно конструкции, в полином, вычисляющий число целых точек, имеет смысл подставлять лишь положительные числа. Чтобы придать смысл отрицательной подстановке, нужны виртуальные многогранники. Двойственность Эрхарта и её естественное обобщение. Секрет фокуса Бриона.
-
Гаянэ Панина
Вот три тесно связанные между собой задачи, которые мы будем обсуждать: Как распрямить плотницкую линейку? Можно ли нарисовать на сфере правильно раскрашенный граф? Верна ли старая гипотеза А. Д. Александрова о характеризации сферы? Попутно будет сформулировано много задач разного уровня сложности (именно исследовательских задач, а не упражнений!). Часть из них — для умеющих и любящих программировать. В курсе будет много картинок.
-
Владимир Арнольд
Астроидой называется гипоциклоида с четырьмя остриями. Недавнее появление астроид и гипоциклоид в качестве ответов и моделей в целом ряде различных задач теории особенностей, теории каустик и волновых фронтов, теорий эволют и эвольвент, сделало ясным фундаментальное значение этих объектов и привело к открытию большого числа новых фактов, относящихся то к геометрии и анализу, то к физике и теории распространения волн, то к симплектической и контактной топологии, то к вариационному исчислению и оптимальному управлению. Обнаружение связи между гессиановой топологией и астроидальной геометрией явилось полной неожиданностью и немедленно привело к быстрому прогрессу в обеих областях.
-
Алексей Сосинский
Лекция начнется с демонстрации недавно обнаруженной серии физических экспериментов с проволочном контуром, который моделирует узлы (т.е. гладкие замкнутые кривые в пространстве). Оказывается, что этот контур — очень умный: он во многих случаях умеет распутывать тривиальный узел в круглую окружность, выполнять т.н. движения Рейдемейстера, движения Маркова, фокус Уитни, и всегда минимизирует т.н. индекс Уитни. Во второй части лекции будет рассмотрен один из красивейших подходов к изучению математической теории узлов, основанный на использовании т.н. «энергии узлов».
-
Иван Ященко
В этой лекции мы познакомимся с одним из важнейших понятий топологии — компактностью, начав с обсуждение того, какие же свойства обычного отрезка отвечают за выполнение основных теорем о непрерывных функциях. Будет разобрано много примеров и применений — простых и сложных. В основном, мы будем заниматься метрическими пространствами (определение будет напомнено). Немного позанимаемся и компактностью в топологических пространствах (определение будет дано).
-
Алексей Сосинский
В лекции будет сказано, что такое узлы (и их родственники — зацепления, косы, ленты), но вместо соответствующих теорий, будут рассказаны некоторые яркие «внешние» применения этих понятий, т. е. приложения к другим наукам. А именно: Индекс зацепления двух кривых и электромагнетизм; Перестройки по заузленным лентам и опровержения первоначального варианта его знаменитой гипотезы; Косы и оправдание существования позитрона (и вообще антимира); Заузленные ДНК; Простейшее зацепление и расслоение Хопфа.
-
Владимир Успенский
Успенский Владимир Андреевич, доктор физико-математических наук, профессор. Летняя школа «Современная математика», г. Дубна, 9 июля 2012 г.; XIV Летняя лингвистическая школа, г. Дубна, «Ратмино», 8-18 июля 2012 г.
-
Павел Семенов
Любая функция, непрерывная на отрезке I, ограничена на нем и достигает своего наибольшего (наименьшего) значения. На какое подмножество К числовой прямой можно заменить I так, чтобы приведенное утверждение (теорема Вейерштрасса) осталось верным? Ответ: на компакт и только на компакт. Компакты на прямой, на плоскости, в пространстве и, вообще, в метрических пространствах, образуют один из самых хороших классов пространств, используемых в математическом и в функциональном анализе, топологии, математической экономике и других приложениях классической математики. Оказывается, среди компактов есть «самый большой» компакт, гильбертов куб. Он является (иньективно) универсальным. Эти слова означают, что гильбертов куб содержит в себе копии всех других компактов. Есть среди компактов объект, универсальный в несколько противоположном (проективном) смысле. Любой другой компакт может быть получен из этого единственного компакта с помощью непрерывного отображения.
Далее >>>
|
|