Универсальные компакты
Любая функция, непрерывная на отрезке I, ограничена на нем и достигает своего наибольшего (наименьшего) значения. На какое подмножество К числовой прямой можно заменить I так, чтобы приведенное утверждение (теорема Вейерштрасса) осталось верным? Ответ: на компакт и только на компакт.
Компакты на прямой, на плоскости, в пространстве и, вообще, в метрических пространствах, образуют один из самых хороших классов пространств, используемых в математическом и в функциональном анализе, топологии, математической экономике и других приложениях классической математики.
Оказывается, среди компактов есть «самый большой» компакт, гильбертов куб. Он является (иньективно) универсальным. Эти слова означают, что гильбертов куб содержит в себе копии всех других компактов.
Есть среди компактов объект, универсальный в несколько противоположном (проективном) смысле. Любой другой компакт может быть получен из этого единственного компакта с помощью непрерывного отображения. Этот универсальный объект — канторовское множество, или, как принято говорить в описательной теории фракталов, пыль Кантора.
Если будет возможность, то планируется рассказать и о нескольких других замечательных компактах: ковер (салфетка) Серпинского, кривая Менгера и их универсальности в классе всех плоских кривых и кривых в метрических пространствах, соответственно.
Слайды:
Часть 1 (ppt 1.27 Mb);
Часть 2 (ppt 240 Kb);
Часть 3 (ppt 493 Kb);
Часть 4 (ppt 680 Kb).
Семенов Павел Владимирович, профессор, доктор физико-математических наук.
Летняя школа «Современная математика», г. Дубна
20-24 июля 2015 г.
Похожее
-
Иван Ященко
В этой лекции мы познакомимся с одним из важнейших понятий топологии — компактностью, начав с обсуждение того, какие же свойства обычного отрезка отвечают за выполнение основных теорем о непрерывных функциях. Будет разобрано много примеров и применений — простых и сложных. В основном, мы будем заниматься метрическими пространствами (определение будет напомнено). Немного позанимаемся и компактностью в топологических пространствах (определение будет дано).
-
Сергей Новиков
Дифференциальные 1-формы можно рассматривать как многозначные функции. Они приводят к глубоким топологическим задачам и имеют нетривиальные приложения в физике твёрдого тела. Лекцию читает Новиков Сергей Петрович, академик РАН, доктор физико-математических наук, профессор.
-
Андрей Болибрух
В этих двух лекциях мы хотим рассказать вам о дифференциальных формах, расслоениях и связностях. Эти понятия сейчас активно используются в разных областях математики и физики, и нам хотелось бы хотя бы немного вас с ними познакомить. Для того чтобы наш рассказ не был излишне абстрактным, мы привязаться к такому физическому объекту, как электромагнитное поле, и показать вам как при попытке описания этого поля естественным путем возникают все перечисленные понятия.
-
Станислав Шапошников
Множества. Функции. Отношения эквивалентности и порядка. Вещественные и комплексные числа. Числовые последовательности и ряды. Метрические пространства. Сепарабельность. Полнота. Пополнение. Вещественные и pадические числа пополнения рациональных чисел. Топология вещественной прямой. Теорема Бэра. Компакты. Множество Кантора. Непрерывные функции и их свойства. Фундаментальная группа окружности. Поточечная и равномерная сходимость последовательности функций. Топологические пространства. Топология поточечной сходимости. Производная и дифференциал. Производные высокого порядка. Формула Тейлора. Интеграл. Теорема Лиувилля об интегрируемости в элементарных функциях.
-
Дмитрий Аносов
Лекции читает Аносов Дмитрий Викторович, доктор физико-математических наук, профессор, академик РАН. Летняя школа «Современная математика», г. Дубна. 2001 г.
-
Владимир Протасов
Любой сигнал, будь то звук, изображение или другая функция, никогда не хранится в компьютере по точкам. Это дорого и неэффективно. Сигнал раскладывается в сумму других, «базовых» функций, и хранятся коэффициенты разложения. Главный вопрос — какую систему базовых функций использовать? И как построить хорошую систему, чтобы сигнал быстро и качественно воспроизводился и при этом занимал мало памяти? За это отвечает мощная и красивая математическая теория. В течение десятилетий базовыми функциями были синус и косинус, что естественно, учитывая природу звука. Это — ряды Фурье, изобретенные более 200 лет назад. Однако, к середине XX века стало ясно, что они не отвечают современным запросам.
-
Александр Буфетов, Севак Мкртчян
Рассмотрим задачу о полиномах, наименее уклоняющиеся от нуля. Требуется найти полином Pn(x) степени n со старшим коэффициентом 1, такой что величина max_{x∈[−1,1]}|Pn(x)| принимает наименьшее возможное значение. Эту задачу решил Чебышёв, доказавший, что искомые полиномы — последовательность полиномов Чебышева, который являются классическим примером семейства ортогональных полиномов.
-
Сергей Ландо
Что такое каустики, знает всякий, кто когда-либо выжигал по дереву, собирая солнечные лучи с помощью линзы, видел световые блики на дне неглубокого водоема от ряби на поверхности воды или наблюдал игру света, отражающегося от дна чашки. Латинское слово «каустик» означает «жгучий», и им называют множество тех точек в пространстве, в которых собирается больше лучей какого-либо светового потока, чем в соседних точках. Скажем, каустика равномерно излучающей сферы это ее центр — в него приходят все лучи. Однако если сферу немного возмутить — сжать в одном направлении и растянуть в другом, то каустика превращается из точки в очень интересную поверхность, о которой, в основном, и пойдет речь.
-
Владимир Протасов
Каким образом фотография с разрешением 8 Мп может поместиться в файл размером 2 Мб? Современные программы позволяют сжать изображение не только в 4, но и в 20–30, а иногда и в 100 раз без существенной потери качества. То же происходит со звуковыми файлами при записи музыки, с объёмными изображениями в компьютерной томографии и т.д. За всем этим стоит мощная и достаточно красивая математическая теория. В течение многих лет алгоритмы сжатия и передачи информации строились на основе разложения функций в ряды Фурье — в суммы по системе синусов и косинусов. Главным инструментом было быстрое преобразование Фурье — комбинаторный алгоритм для вычисления коэффициентов разложения. В конце 20 века стало ясно, что ряды Фурье, изобретенные более 200 лет назад, уже не отвечают современным запросам.
-
Владимир Протасов
Вариационное исчисление — наука о поиске минимума функции в бесконечномерном пространстве. В отличие от привычных нам задач на минимум, когда нужно оптимальным образом выбрать число (параметр), или, скажем, точку на плоскости, в вариационных задачах требуется найти оптимальную функцию. При этом, одним и тем же набором средств решаются задачи самого разного происхождения: из классической механики, геометрии, математической экономики и т.д. Мы начнем со старых задач, известных с XVII века, и, перекидывая мостки от одной задачи к другой, быстро доберемся до современных результатов и нерешенных проблем.
Далее >>>
|
|