В этой лекции мы познакомимся с одним из важнейших понятий топологии — компактностью, начав с обсуждение того, какие же свойства обычного отрезка отвечают за выполнение основных теорем о непрерывных функциях. Будет разобрано много примеров и применений — простых и сложных. В основном, мы будем заниматься метрическими пространствами (определение будет напомнено). Немного позанимаемся и компактностью в топологических пространствах (определение будет дано). Те, кто уже знакомы с понятием компактности, могут спокойно проспать первую половину (лучше в номере, так как пара первая), и, возможно, прийти на вторую половину, в которой будет рассказано про более тонкие применения компактности (например, для нахождения аналитического отображения области в круг), необычные наблюдения (например, какой компакт на плоскости встречается в природе «чаще всего») и про некоторые классические нерешенные задачи (оказывается, что на некоторые естественные вопросы о компактах на обычной плоскости ответов пока нет). Предварительных знаний для основного материала лекции не требуется. Необходимые для некоторых примеров понятия будут сообщены по ходу дела.
Ященко Иван Валериевич, кандидат физико-математических наук.
Летняя школа «Современная математика», г. Дубна
21 июля 2008 г.
Любая функция, непрерывная на отрезке I, ограничена на нем и достигает своего наибольшего (наименьшего) значения. На какое подмножество К числовой прямой можно заменить I так, чтобы приведенное утверждение (теорема Вейерштрасса) осталось верным? Ответ: на компакт и только на компакт. Компакты на прямой, на плоскости, в пространстве и, вообще, в метрических пространствах, образуют один из самых хороших классов пространств, используемых в математическом и в функциональном анализе, топологии, математической экономике и других приложениях классической математики. Оказывается, среди компактов есть «самый большой» компакт, гильбертов куб. Он является (иньективно) универсальным. Эти слова означают, что гильбертов куб содержит в себе копии всех других компактов. Есть среди компактов объект, универсальный в несколько противоположном (проективном) смысле. Любой другой компакт может быть получен из этого единственного компакта с помощью непрерывного отображения.
Мы обсудим понятие, которое все используют, но о котором обычно рассказывают по ходу дела — о метрическом пространстве. Постараемся разобрать красивые примеры, обсудить факты и методы применяемые повсюду: от дифференциальных уравнений до теории кодирования и стеганографии — пополнении, принципе сжимающих отображений, теореме Бэра, компактности, теореме Вейерштрасса…
Будет рассказано о понятии, которое все используют, но обычно рассказывают по ходу дела — метрическом пространстве. Будет разобрано много красивых примеров, рассказано о фактах и методах применяемых повсюду: от дифференциальных уравнений до теории кодирования — пополнении, принципе сжимающих отображений, теореме Бэра.
На Московской математической олимпиаде был предложен «дискретный» вариант теоремы о неподвижной точки внутри замкнутой траектории векторного поля: В некоторых клетках квадрата 20×20 стоит стрелочка в одном из четырёх направлений. На границе квадрата все стрелочки смотрят вдоль границы по часовой стрелке (см. рис.). Кроме того, стрелочки в соседних (возможно, по диагонали) клетках не смотрят в противоположных направлениях. Докажите, что найдётся клетка, в которой стрелочки нет. Разбирая 3–5 решений этой задачи, мы на наглядном уровне увидим теорему Жордана, индекс векторного поля и многое другое.
Мы попытаемся рассказать о криптографии — бурно развивающейся прикладной науке, оказывающей огромное влияние на развитие не только техники, но и математики. Особое внимание будет уделено тому, как важно правильно ставить задачи, а также тому, как можно использовать не только достижения, но и “неудачи” математики на практике. В частности, будет рассказано, что такое криптография с открытым ключом и как можно убедить учителя, что ты знаешь ответ на вопрос, так и не дав этого ответа.
Мы обсудим несколько наглядных сюжетов на стыке математики, физики, химии, географии (закон сохранения энергии, молекула в виде листа Мебиуса, теорема Эйлера и другие). Мы постараемся дать интуитивно почувствовать, и не обсуждать формально некоторые красивые математические понятия. Не требуется до лекции (и не появится после лекции) никаких формальных знаний.
Если у (обычного плоского) квадрата склеить противолежащие стороны, то получится тор с плоской метрикой, то есть каждый достаточно малый участок тора будет устроен как кусочек евклидовой плоскости. Если квадрат заменить на прямоугольник или параллелограмм, аналогичная склейка тоже даст тор с плоской метрикой, но про него разумно сказать — это другой тор, не изометричный первому. Здесь история о поверхностях с плоской метрикой заканчивается, так как никакую другую поверхность (с плоской метрикой) кроме этих торов из куска евклидовой плоскости склеить нельзя. Поэтому мы евклидову плоскость заменим на плоскость Лобачевского (с ней больше свободы!) и определим пространство Тейхмюллера как пространство, элементы которого суть все возможные способы склеить поверхность рода g (т.е. сфера с g ручками) из гиперболической развертки, то есть, из некоторого куска гиперболической плоскости.
Астроидой называется гипоциклоида с четырьмя остриями. Недавнее появление астроид и гипоциклоид в качестве ответов и моделей в целом ряде различных задач теории особенностей, теории каустик и волновых фронтов, теорий эволют и эвольвент, сделало ясным фундаментальное значение этих объектов и привело к открытию большого числа новых фактов, относящихся то к геометрии и анализу, то к физике и теории распространения волн, то к симплектической и контактной топологии, то к вариационному исчислению и оптимальному управлению. Обнаружение связи между гессиановой топологией и астроидальной геометрией явилось полной неожиданностью и немедленно привело к быстрому прогрессу в обеих областях.