Алгебра многогранников
Как мы узнаем, выпуклые многогранники можно складывать и перемножать между собой. Далее, выпуклые многогранники можно умножать на рациональные числа. И наконец, что несколько неожиданно, для выпуклых многогранников можно определить логарифм и экспоненту. Вооружившись этими умениями, мы построим математически богатый замечательный объект — (почти) градуированную алгебру над Q — алгебру многогранников Питера Мак Маллена. С помощью этой алгебры мы (почти) докажем теорему об f-векторе выпуклого многогранника. Эта алгебра хорошо «отражается» в теории алгебраических торических многообразий, см. курс Г. Паниной 2014 года.
Программа курса:
- Равносоставленность относительно параллельных переносов.
- Сумма Минковского. В нашей алгебре она играет роль произведения.
- Строим кольцо многогранников.
- Превращаем кольцо в алгебру: учимся делить на целые числа.
- Логарифм и экспонента как универсальные инструменты для построения градуированной алгебры. f- и h-векторы. Теорема о характеризации f-вектора (именуемая «g-теорема»).
Будет много задач и упражнений. Не требуется никаких предварительных знаний. О том, что такое «кольцо», «алгебра», «градуированная алгебра» будет рассказано на лекциях.
Панина Гаянэ Юрьевна, доктор физико-математических наук.
Летняя школа «Современная математика», г. Дубна
22-30 июля 2013 г.
Похожее
-
Гаянэ Панина
Некоторые комбинаторные схемы дают на выходе интересные выпуклые многогранники, имеющие отношение много к чему из современной математики. Перестановки дают пермутоэдр (перестановочный многогранник). Где он может пригодиться? (Конфигурационное пространство шарнирного многоугольника). Скобочные последовательности дают ассоциэдр (многогранник Сташефа). Зачем он нужен? («Чудесная» компактификация де Кончини–Прочезе.) Вторичный многогранник (secondary polytope Гельфанда–Капранова–Зелевинского) связан с совершенно иной комбинаторной схемой, и при этом обобщает предыдущие примеры.
-
Гаянэ Панина
Курс представляет собой букет из трёх очень старых и трёх очень новых идей. Основной объект — число целых (т.е. с целыми координатами) точек в многограннике. Зачем нужны целые точки? Несколько примеров: многогранник Ньютона, Теорема Бриона — для начала без доказательства, просто в качестве фокуса, а также подсчёт целых метрических ленточных графов. Число целых точек в выпуклом многограннике ведёт себя как полином. Согласно конструкции, в полином, вычисляющий число целых точек, имеет смысл подставлять лишь положительные числа. Чтобы придать смысл отрицательной подстановке, нужны виртуальные многогранники. Двойственность Эрхарта и её естественное обобщение. Секрет фокуса Бриона.
-
Гаянэ Панина
Вот три тесно связанные между собой задачи, которые мы будем обсуждать: Как распрямить плотницкую линейку? Можно ли нарисовать на сфере правильно раскрашенный граф? Верна ли старая гипотеза А. Д. Александрова о характеризации сферы? Попутно будет сформулировано много задач разного уровня сложности (именно исследовательских задач, а не упражнений!). Часть из них — для умеющих и любящих программировать. В курсе будет много картинок.
-
Владимир Арнольд
Лекцию читает Арнольд Владимир Игоревич (1937–2010), доктор физико-математических наук, профессор, академик РАН. Летняя школа «Современная математика», г. Дубна, 20 июля 2003 г.
-
Сергей Новиков
Лекция будет посвящена некоторым нестандартным аспектам элементарной симплектической геометрии и линейной алгебры и их применению для нужд квантовой теории рассеяния. Для большинства математиков этот язык непривычен, поэтому все необходимые понятия будут введены самым элементарным образом.
-
Алексей Белов, Иван Митрофанов
В этом курсе будет рассказано о подстановочных системах довольно общего вида и о связанных с ними геометрических конструкциях, называемых фракталами Рози. Например, слово Трибоначчи 121312112131… состоит из цифр {1,2,3} и получается с помощью подстановки 1→12, 2→13, 3→1. Оказывается, что оно в некотором смысле устроено так же, как двумерный тор, разбитый на три части с фрактальной границей. (В то, что на первом рисунке изображена развёртка тора, трудно поверить, но тем не менее это так, и вторая картинка это иллюстрирует).
-
Николай Долбилин
Теорема о существовании и единственности выпуклого многогранника с данными направлениями и площадями его граней, открытая Минковским в 1897 году, наряду с теоремами Эйлера, Коши, А. Д. Александрова, является одной из фундаментальных теорем о многогранниках. Рассказано о нескольких приложениях этой замечательной теоремы.
-
Николай Долбилин
Лекцию читает Долбилин Николай Петрович, профессор, доктор физико-математических наук. Летняя школа «Современная математика», г. Дубна. 28 июля 2008 г.
-
Николай Долбилин
Параллелоэдром (это понятие и сам термин были введены великим кристаллографом Е.С. Федоровым для нужд кристаллографии) называют многогранник, параллельными копиями которого можно заполнить пространство. Обычный строительный кирпич является очевидно частным случаем параллелоэдра. Как и кирпич, любой параллелоэдр имеет попарно параллельные грани, чем объясняется его труднопроизносимое название. Многомерный параллелоэдр имеет многочисленные приложения в геометрии чисел, в теории кодирования, комбинаторной геометрии и т.д. В лекции будет рассказано в первую очередь о двух замечательных теоремах Минковского о свойствах параллелоэдров, а также об открытой проблеме Вороного, которой в этом году исполнился 101 год, и кое о чем еще.
-
Сергей Новиков
Лекцию читает Новиков Сергей Петрович, академик РАН, доктор физико-математических наук, профессор. Летняя школа «Современная математика», г. Дубна. 20 июля 2003 г.
Далее >>>
|
|