Параллелоэдром (это понятие и сам термин были введены великим кристаллографом Е.С. Федоровым для нужд кристаллографии) называют многогранник, параллельными копиями которого можно заполнить пространство.
Обычный строительный кирпич является очевидно частным случаем параллелоэдра. Как и кирпич, любой параллелоэдр имеет попарно параллельные грани, чем объясняется его труднопроизносимое название. Многомерный параллелоэдр имеет многочисленные приложения в геометрии чисел, в теории кодирования, комбинаторной геометрии и т.д.
В лекции будет рассказано в первую очередь о двух замечательных теоремах Минковского о свойствах параллелоэдров, а также об открытой проблеме Вороного, которой в этом году исполнился 101 год, и кое о чем еще.
Долбилин Николай Петрович, профессор, доктор физико-математических наук.
Летняя школа «Современная математика», г. Дубна
28 июля 2009 г.
Теорема о существовании и единственности выпуклого многогранника с данными направлениями и площадями его граней, открытая Минковским в 1897 году, наряду с теоремами Эйлера, Коши, А. Д. Александрова, является одной из фундаментальных теорем о многогранниках. Рассказано о нескольких приложениях этой замечательной теоремы.
Лекцию читает Долбилин Николай Петрович, профессор, доктор физико-математических наук. Летняя школа «Современная математика», г. Дубна. 28 июля 2008 г.
Некоторые комбинаторные схемы дают на выходе интересные выпуклые многогранники, имеющие отношение много к чему из современной математики. Перестановки дают пермутоэдр (перестановочный многогранник). Где он может пригодиться? (Конфигурационное пространство шарнирного многоугольника). Скобочные последовательности дают ассоциэдр (многогранник Сташефа). Зачем он нужен? («Чудесная» компактификация де Кончини–Прочезе.) Вторичный многогранник (secondary polytope Гельфанда–Капранова–Зелевинского) связан с совершенно иной комбинаторной схемой, и при этом обобщает предыдущие примеры.
Как мы узнаем, выпуклые многогранники можно складывать и перемножать между собой. Далее, выпуклые многогранники можно умножать на рациональные числа. И наконец, что несколько неожиданно, для выпуклых многогранников можно определить логарифм и экспоненту. Вооружившись этими умениями, мы построим математически богатый замечательный объект — градуированную алгебру над Q — алгебру многогранников Питера Мак Маллена. С помощью этой алгебры мы докажем теорему об f-векторе выпуклого многогранника. Эта алгебра хорошо «отражается» в теории алгебраических торических многообразий.
Курс представляет собой букет из трёх очень старых и трёх очень новых идей. Основной объект — число целых (т.е. с целыми координатами) точек в многограннике. Зачем нужны целые точки? Несколько примеров: многогранник Ньютона, Теорема Бриона — для начала без доказательства, просто в качестве фокуса, а также подсчёт целых метрических ленточных графов. Число целых точек в выпуклом многограннике ведёт себя как полином. Согласно конструкции, в полином, вычисляющий число целых точек, имеет смысл подставлять лишь положительные числа. Чтобы придать смысл отрицательной подстановке, нужны виртуальные многогранники. Двойственность Эрхарта и её естественное обобщение. Секрет фокуса Бриона.
Вот три тесно связанные между собой задачи, которые мы будем обсуждать: Как распрямить плотницкую линейку? Можно ли нарисовать на сфере правильно раскрашенный граф? Верна ли старая гипотеза А. Д. Александрова о характеризации сферы? Попутно будет сформулировано много задач разного уровня сложности (именно исследовательских задач, а не упражнений!). Часть из них — для умеющих и любящих программировать. В курсе будет много картинок.
Лекция прочитана 5 июля 2006 года в поселке Московский в рамках II конференции лауреатов Всероссийского конкурса учителей математики и физики фонда «Династия».
Лекцию читает Арнольд Владимир Игоревич (1937–2010), доктор физико-математических наук, профессор, академик РАН. Летняя школа «Современная математика», г. Дубна, 20 июля 2007 г.
Цель этого курса — познакомить слушателей с дифференциальной геометрией на материале одного классического сюжета, не дублируя того, что им будет рассказано в процессе дальнейшего обучения, и не прибегая к сколько-нибудь сложным вычислениям. Развертывающаяся поверхность — это поверхность, которая получается, если согнуть лист бумаги, не делая складок. Развертывающиеся поверхности обладают замечательными свойствами. Некоторые из этих свойств можно увидеть, если очень внимательно приглядеться к согнутому листу бумаги, некоторые другие таким способом заметить, пожалуй, нельзя.
Однажды в Доме ученых мне удалось организовать диспут на тему «Развитие геометрии в двадцатом столетии». Естественно возник вопрос: а что такое геометрия? Что произошло с геометрией в прошлом веке? Геометрия ныне одна из многих? Кого из наших современников можно назвать великим геометром?