Бесконечномерные группы
Буфетов Александр Игоревич, доктор физико-математических наук.
г. Москва, НМУ
30 сентября – 2 декабря 2010 г.
Похожее
-
Александр Буфетов, Роман Авдеев
Курс посвящён обобщению понятия вращения евклидова пространства. Оказывается, что с каждым евклидовым пространством можно связать новое пространство, объекты которого называются спинорами. Между исходным пространством и пространством спиноров имеется замечательная связь: всякому вращению исходного пространства можно сопоставить преобразование пространства спиноров, определённое однозначно с точностью до знака. Получаемые таким образом преобразования пространства спиноров образуют группу, называемую спинорной группой.
-
Александр Буфетов
Лягушка сидит в вершине квадрата и раз в десять секунд принимает решение и совершает прыжок: с вероятностью p по часовой стрелке, с вероятностью q против часовой стрелки, с вероятностью 1−p−q на месте. Через десять секунд вновь решая куда прыгнуть, лягушка принимает во внимание лишь ту вершину, в которой она находится. Таким образом, положения лягушки в различные моменты времени не независимы, однако, при фиксированном настоящем, будущее лягушки независимо от её прошлого. В честь открывшего их нашего великого соотечественника Андрея Андреевича Маркова такие системы испытаний называют цепями Маркова. Цель нашего курса — дать элементарное введение в теорию марковских процессов со счётным числом состояний.
-
Александр Буфетов, Александр Комлов
Рассмотрим конечный связный граф. Сколько в нем остовных деревьев — деревьев, содержащих все вершины графа? А какая их доля содержит данный набор ребер? Цель нашего курса — дать элементарное введение в теорию детерминантных процессов. Мы планируем обсудить недавние достижения и сформулировать нерешенные проблемы. Программа занятий: детерминанты и пфаффианы; остовные деревья; случайные матрицы; мультипликативные функционалы.
-
Алексей Савватеев
В миникурсе ликвидируются пробелы школьного образования, относящиеся к теории групп и к конкретным примерам групп. Будут установлены базовые факты про вычеты, доказана малая теорема Ферма, исследованы подгруппы групп перестановок на трёх и четырёх символах, введено понятие нормальной подгруппы данной группы и простоты группы. Затем будет доказано, что группа чётных перестановок на n≥5 символах — простая (что откроет желающим дорогу к вопросам о разрешимости алгебраических уравнений в радикалах), а также что подгруппа переносов плоскости (пространства) — нормальная в группе всех (аффинных) движений соответствующего объекта. Маломерные группы движений получат полную характеризацию (теорема Шаля и законы композиции движений разных видов).
-
Евгений Смирнов
Группы отражений являются дискретной группой движений пространства постоянной кривизны (сфера, евклидово или гиперболическое пространство), которая порождается множеством отражений. Группы отражений появляются удивительно часто в различных алгебраических задач.
-
Анатолий Вершик
Лишь недавно, и, как всегда одновременно и независимо, нескольким группам математиков понадобилось по разным поводам систематически изучать случайно выбранные подгруппы данной группы. Для докладчика этим поводом стала задача: найти инвариантные относительно сопряжения меры на решетке всех подгрупп данной группы. Эта задача важна для теории представлений (фактор-представления некоторых групп), и для самой теории динамических систем (вполне несвободные действия). Другие поводы — асимптотика чисел Бетти на локально симметрических пространствах, действия групп на деревьях, теория блужданий на случайных однородных пространствах и, по-видимому, это не всё. Доклад будет посвящен общим понятиям, разбору фундаментального примера, а именно, — что такое случайная подгруппа симметрической группы — конечной и бесконечной, и, наконец, объяснению того, как все это связано с теорией характеров.
-
Иван Аржанцев
В этом курсе изучается такой замечательный и вполне элементарный объект, как конечномерные коммутативные ассоциативные алгебры над комплексными числами. Здесь достаточно легко доказать первые структурные результаты, но получить полную классификацию едва ли возможно. Мы обсудим различные техники работы с конечномерными алгебрами (максимальные идеалы и локальные алгебры, фильтрации и градуировки, последовательность Гильберта-Самюэля и цоколь) и получим явное описание алгебр малых размерностей. Оказывается, конечномерные алгебры тесно связаны с действиями с открытой орбитой коммутативных групп матриц на аффинных и проективных пространствах. Мы объясним эту связь. В процессе объяснения естественно возникнут такие понятия как экспонента линейного оператора, представление группы и циклический модуль, алгебра Ли и ее универсальная обертывающая.
-
Михаил Тёмкин
Приставляя тетраэдры друг к другу по граням можно получать примеры симплициальных комплексов — важного математического объекта. Раскрасим треугольники такого сооружения в чёрный и белый цвета и назовём раскраску хорошей, если каждый тетраэдр имеет поровну чёрных и белых граней. Оказывается, что в случае (стандартно симплициально разбитых) маломерных сфер множество белых треугольников оказывается объектом, достойным изучения: листом Мёбиуса или проективной плоскостью. При описании того, как именно эти объекты разбиты на треугольники у нас естественным образом возникнет икосаэдр — замечательный правильный многогранник. Исследование группы его самосовмещений позволит понять, сколько существует хороших раскрасок. По пути нам встретятся такие важные базовые понятия математики, как вышеупомянутые симплициальный комплекс и группа симметрий, действие и пр.
-
Иван Лосев
В лекциях вводятся основные сведения из теории представлений конечных групп, объясняется подход Вершика и Окунькова к представлениям симметрических групп, рассказывается о том, что происходит в положительной характеристике и при чем тут алгебры Ли. Курс должен быть понятен студентам, начиная с первого курса, хорошо освоившим курс алгебры.
-
Алексей Савватеев
Геометрия — классическая Евклидова, Лобачевского, проективная и сферическая — не получает достаточного внимания в программах современных мат.факультетов (не говоря уже о школах). В то же время она наглядна и на редкость красива. Многие утверждения визуально очевидны и в то же время неожиданные (почему самолёт, летящий из Иркутска в Лиссабон, стартует сперва в направлении Норильска?) За 8 лекций слушатели ознакомятся с начальными сведениями в этой области математики, берущей своё начало более двух тысячелетий назад. Закончим мы гораздо более сложным материалом, непосредственно выводящим на современные разделы науки. Будут затронуты основы теории групп и алгебр Ли.
Далее >>>
|
|