Теория групп
Алексей Савватеев о курсе лекций:
Приглашаю вас на свой миникурс по теории групп, который я назвал "Школьная теория групп".
Я считаю, что теорию групп нужно изучать в средних классах — примерно тогда же, когда вводится символьное обозначение (буквы x,y,z и т.п.) Потому что ступень абстракции, ведущая к общему понятию группы от систем остатков по данному модулю (с одной стороны) и перестановок (с другой), не выше, чем ступень абстракции от чисел 3,4,5 к символам. Перестановки же легко понять и освоить уже во втором-третьем классе, точно так же, как и системы остатков по данному модулю.
В миникурсе я ликвидирую пробелы школьного образования, относящиеся к теории групп и к конкретным примерам групп. Будут установлены базовые факты про вычеты, доказана малая теорема Ферма, исследованы подгруппы групп перестановок на трёх и четырёх символах, введено понятие нормальной подгруппы данной группы и простоты группы.
Затем будет доказано, что группа чётных перестановок на n≥5 символах — простая (что откроет желающим дорогу к вопросам о разрешимости алгебраических уравнений в радикалах), а также что подгруппа переносов плоскости (пространства) — нормальная в группе всех (аффинных) движений соответствующего объекта. Маломерные группы движений получат полную характеризацию (теорема Шаля и законы композиции движений разных видов).
Алексей Владимирович Савватеев — доктор физико-математических наук, специалист в области теории игр, ректор Университета Дмитрия Пожарского, популяризатор математики среди детей и взрослых. Работает одновременно в нескольких научных учреждениях, в том числе в Лаборатории исследования социальных отношений и многообразия общества РЭШ. Читает в Яндексе лекции в Школе Анализа Данных, участвует в теоретических исследованиях. В Иркутске на 0.2 ставки работает доцентом ИГУ.
Матфак ИГУ (Бульвар Гагарина, 20)
5,6,9 и 10 ноября 2015 года.
Похожее
-
Алексей Савватеев

Геометрия — классическая Евклидова, Лобачевского, проективная и сферическая — не получает достаточного внимания в программах современных мат.факультетов (не говоря уже о школах). В то же время она наглядна и на редкость красива. Многие утверждения визуально очевидны и в то же время неожиданные (почему самолёт, летящий из Иркутска в Лиссабон, стартует сперва в направлении Норильска?) За 8 лекций слушатели ознакомятся с начальными сведениями в этой области математики, берущей своё начало более двух тысячелетий назад. Закончим мы гораздо более сложным материалом, непосредственно выводящим на современные разделы науки. Будут затронуты основы теории групп и алгебр Ли.
-
Алексей Савватеев

Теория Галуа — раздел алгебры, позволяющий переформулировать определенные вопросы теории полей на языке теории групп, делая их в некотором смысле более простыми. Теория Галуа даёт единый элегантный подход к решению классических задач: какие фигуры можно построить циркулем и линейкой? какие алгебраические уравнения разрешимы с помощью стандартных алгебраических операций (сложение, вычитание, умножение, деление и извлечение корня)?
-
Алексей Савватеев

Вводный миникурс по алгебре, ориентированный на студентов-первокурсников, но всем остальным может быть интересно тоже.
-
Алексей Савватеев
Таблицы сложения и умножения остатков. Многочлены с коэффициентами в остатках. Теорема Безу над любой системой остатков. Парадоксы числа корней. Таблицы умножения по простому модулю. Простейшие конечные поля. Основная теорема о корнях многочленов с коэффициентами в поле. Поля из p элементов. Теоретико-групповые методы: теорема Лагранжа и Малая теорема Ферма. Бином Ньютона, автоморфизм возведения в p-ю степень и второе доказательство теоремы Ферма. Теорема Вильсона. Конечные поля из p^r элементов, мультипликативная группа и структура их вложимости друг в друга. Единственность конечного поля.
-
Алексей Савватеев, Алексей Семихатов
Вопрос науки

Зачем математики придумывают всё новые неразрешимые задачи? Зачем нужна современная математика? Среди ученых нет ни одного, кто разбирался бы во всех областях современных математических наук. А математики придумывают все новые и новые неразрешимые задачи, и потом десятилетиями бьются над ними. Зачем все это? И какое отношение математика имеет к нашей жизни? Гость программы доктор физико-математических наук Алексей Савватеев. Беседует Алексей Семихатов.
-
Анатолий Вершик
Лишь недавно, и, как всегда одновременно и независимо, нескольким группам математиков понадобилось по разным поводам систематически изучать случайно выбранные подгруппы данной группы. Для докладчика этим поводом стала задача: найти инвариантные относительно сопряжения меры на решетке всех подгрупп данной группы. Эта задача важна для теории представлений (фактор-представления некоторых групп), и для самой теории динамических систем (вполне несвободные действия). Другие поводы — асимптотика чисел Бетти на локально симметрических пространствах, действия групп на деревьях, теория блужданий на случайных однородных пространствах и, по-видимому, это не всё. Доклад будет посвящен общим понятиям, разбору фундаментального примера, а именно, — что такое случайная подгруппа симметрической группы — конечной и бесконечной, и, наконец, объяснению того, как все это связано с теорией характеров.
-
Евгений Смирнов

Группы отражений являются дискретной группой движений пространства постоянной кривизны (сфера, евклидово или гиперболическое пространство), которая порождается множеством отражений. Группы отражений появляются удивительно часто в различных алгебраических задач.
-
Александр Буфетов
Курс лекций читает Буфетов Александр Игоревич, доктор физико-математических наук. г. Москва, НМУ.
-
Иван Аржанцев
В этом курсе изучается такой замечательный и вполне элементарный объект, как конечномерные коммутативные ассоциативные алгебры над комплексными числами. Здесь достаточно легко доказать первые структурные результаты, но получить полную классификацию едва ли возможно. Мы обсудим различные техники работы с конечномерными алгебрами (максимальные идеалы и локальные алгебры, фильтрации и градуировки, последовательность Гильберта-Самюэля и цоколь) и получим явное описание алгебр малых размерностей. Оказывается, конечномерные алгебры тесно связаны с действиями с открытой орбитой коммутативных групп матриц на аффинных и проективных пространствах. Мы объясним эту связь. В процессе объяснения естественно возникнут такие понятия как экспонента линейного оператора, представление группы и циклический модуль, алгебра Ли и ее универсальная обертывающая.
-
Михаил Тёмкин

Приставляя тетраэдры друг к другу по граням можно получать примеры симплициальных комплексов — важного математического объекта. Раскрасим треугольники такого сооружения в чёрный и белый цвета и назовём раскраску хорошей, если каждый тетраэдр имеет поровну чёрных и белых граней. Оказывается, что в случае (стандартно симплициально разбитых) маломерных сфер множество белых треугольников оказывается объектом, достойным изучения: листом Мёбиуса или проективной плоскостью. При описании того, как именно эти объекты разбиты на треугольники у нас естественным образом возникнет икосаэдр — замечательный правильный многогранник. Исследование группы его самосовмещений позволит понять, сколько существует хороших раскрасок. По пути нам встретятся такие важные базовые понятия математики, как вышеупомянутые симплициальный комплекс и группа симметрий, действие и пр.
Далее >>>
|
|