Эффект Доплера
Воспринимаемая частота волны зависит от относительной скорости ее источника.
Вам, наверняка, хоть раз в жизни доводилось стоять у дороги, по которой проносится машина со спецсигналом и включенной сиреной. Пока вой сирены приближается, его тон выше, затем, когда машина поравняется с вами, он понижается, и, наконец, когда машина начинает удаляться, он понижается еще, и получается знакомое: ййййииииээээЭААААОоооуууумммм — такой примерно звукоряд. Сами того, возможно, не сознавая, вы при этом наблюдаете фундаментальнейшее (и полезнейшее) свойство волн.
Волны — вообще вещь странная. Представьте себе пустую бутылку, болтающуюся неподалеку от берега. Она гуляет вверх-вниз, к берегу не приближаясь, в то время как вода, казалось бы, волнами набегает на берег. Но нет — вода (и бутылка в ней) — остаются на месте, колеблясь лишь в плоскости, перпендикулярной поверхности водоема. Иными словами, движение среды, в которой распространяются волны, не соответствует движению самих волн. По крайней мере, футбольные болельщики хорошо это усвоили и научились использовать на практике: пуская «волну» по стадиону, они сами никуда не бегут, просто встают и садятся в свой черед, а «волна» (в Великобритании это явление принято называть «мексиканской волной») бежит вокруг трибун.
Волны принято описывать их частотой (число волновых пиков в секунду в точке наблюдения) или длиной (расстояние между двумя соседними гребнями или впадинами). Эти две характеристики связаны между собой через скорость распространения волны в среде, поэтому, зная скорость распространения волны и одну из главных волновых характеристик, можно легко рассчитать другую.
Как только волна пошла, скорость ее распространения определяется только свойствами среды, в которой она распространяется, — источник же волны никакой роли больше не играет. По поверхности воды, например, волны, возбудившись, далее распространяются лишь в силу взаимодействия сил давления, поверхностного натяжения и гравитации. Акустические же волны распространяются в воздухе (и иных звукопроводящих средах) в силу направленной передачи перепада давлений. И ни один из механизмов распространения волн не зависит от источника волны. Отсюда и эффект Доплера.
 Иллюстрация эффекта Доплера применительно к галактикам. Пунктирные линии показывают, где находилась бы спектральная линия излучения в случае стационарного источника. В верхней части спектра — синее смещение (источник излучения приближается к наблюдателю); в нижней — красное смещение (источник удаляется от наблюдателя) |
Давайте еще раз задумаемся над примером с воющей сиреной. Предположим для начала, что спецмашина стоит. Звук от сирены доходит до нас потому, что упругая мембрана внутри нее периодически воздействует на воздух, создавая в нем сжатия — области повышенного давления, — чередующиеся с разрежениями. Пики сжатия — «гребни» акустической волны — распространяются в среде (воздухе), пока не достигнут наших ушей и не воздействуют на барабанные перепонки, от которых поступит сигнал в наш головной мозг (именно так устроен слух). Частоту воспринимаемых нами звуковых колебаний мы по традиции называем тоном или высотой звука: например, частота колебаний 440 герц в секунду соответствует ноте «ля» первой октавы. Так вот, пока спецмашина стоит, мы так и будем слышать неизмененный тон ее сигнала.
Но как только спецмашина тронется с места в вашу сторону, добавится новый эффект. За время с момента испускания одного пика волны до следующего машина проедет некоторое расстояние по направлению к вам. Из-за этого источник каждого следующего пика волны будет ближе. В результате волны будут достигать ваших ушей чаще, чем это было, пока машина стояла неподвижно, и высота звука, который вы воспринимаете, увеличится. И, наоборот, если спецмашина тронется в обратном направлении, пики акустических волн будут достигать ваших ушей реже, и воспринимаемая частота звука понизится. Вот и объяснение тому, почему при проезде машины со спецсигналами мимо вас тон сирены понижается.
Мы рассмотрели эффект Доплера применительно к звуковым волнам, но он в равной мере относится и к любым другим. Если источник видимого света приближается к нам, длина видимой нами волны укорачивается, и мы наблюдаем так называемое фиолетовое смещение (из всех видимых цветов гаммы светового спектра фиолетовому соответствуют самые короткие длины волн). Если же источник удаляется, происходит кажущееся смещение в сторону красной части спектра (удлинение волн).
Этот эффект назван в честь Кристиана Иоганна Доплера, впервые предсказавшего его теоретически. Эффект Доплера меня на всю жизнь заинтересовал благодаря тому, как именно он был впервые проверен экспериментально. Голландский ученый Кристиан Баллот (Christian Buys Ballot, 1817–1870) посадил духовой оркестр в открытый железнодорожный вагон, а на платформе собрал группу музыкантов с абсолютным слухом. (Идеальным слухом называется умение, выслушав ноту, точно назвать её.). Всякий раз, когда состав с музыкальным вагоном проезжал мимо платформы, духовой оркестр тянул какую-либо ноту, а наблюдатели (слушатели) записывали слышащуюся им нотную партитуру. Как и ожидалось, кажущаяся высота звука оказалась в прямой зависимости от скорости поезда, что, собственно, и предсказывалось законом Доплера.
Эффект Доплера находит широкое применение и в науке, и в быту. Во всем мире он используется в полицейских радарах, позволяющих отлавливать и штрафовать нарушителей правил дорожного движения, превышающих скорость. Пистолет-радар излучает радиоволновой сигнал (обычно в диапазоне УКВ или СВЧ), который отражается от металлического кузова вашей машины. Обратно на радар сигнал поступает уже с доплеровским смещением частоты, величина которого зависит от скорости машины. Сопоставляя частоты исходящего и входящего сигнала, прибор автоматически вычисляет скорость вашей машины и выводит ее на экран.
Несколько более эзотерическое применение эффект Доплера нашел в астрофизике: в частности, Эдвин Хаббл, впервые измеряя расстояния до ближайших галактик на новейшем телескопе, одновременно обнаружил в спектре их атомного излучения красное доплеровское смещение, из чего был сделан вывод, что галактики удаляются от нас (см. Закон Хаббла). По сути, это был столь же однозначный вывод, как если бы вы, закрыв глаза, вдруг услышали, что тон звука двигателя машины знакомой вам модели оказался ниже, чем нужно, и сделали вывод, что машина от вас удаляется. Когда же Хаббл обнаружил к тому же, что чем дальше галактика, тем сильнее красное смещение (и тем быстрее она от нас улетает), оно понял, что Вселенная расширяется. Это стало первым шагом на пути к теории Большого взрыва — а это вещь куда более серьезная, чем поезд с духовым оркестром.
 Кристиан Иоганн Доплер / Christian Johann Doppler, 1803–1853
Австрийский физик. Родился в Зальцбурге в семье каменщика. Окончил Политехнический институт в Вене, остался в нем на младших преподавательских должностях до 1835 года, когда получил предложение возглавить кафедру математики Пражского университета, что в последний момент заставило его отказаться от назревшего решения эмигрировать в Америку, отчаявшись добиться признания в академических кругах на родине. Закончил свою карьеру в должности профессора Венского королевского имперского университета. |
Энциклопедия Джеймса Трефила «Природа науки. 200 законов мироздания».
Джеймс Трефил — профессор физики университета Джорджа Мэйсона (США), один из наиболее известных западных авторов научно-популярных книг.
Похожее
-
Владимир Сперантов
Как рождаются красивые созвучия и диссонансы? Что такое музыкальные иллюзии? Чем отличаются звуки ударных и струнных инструментов? В чем «магия» чисел 12 и 24 для композиторов? Лекция сопровождается показом большого числа интересных демонстраций!
-

Смысл принципа Гюйгенса проще всего понять, если представить себе, что гребень волны на водной поверхности на мгновение застыл. Теперь представьте, что в этот миг вдоль всего фронта волны в каждую точку гребня брошено по камню, в результате чего каждая точка гребня становится источником новой круговой волны. Практически всюду вновь возбужденные волны взаимно погасятся и не проявятся на водной поверхности. И лишь вдоль фронта исходной волны вторичные маленькие волны взаимно усилятся и образуют новый волновой фронт, параллельный предыдущему и отстоящий от него на некоторое расстояние. Именно по такой схеме, согласно принципу Гюйгенса, и распространяется волна.
-
Дмитрий Первушин
О таинственной связи между музыкой и математикой написано немало книг, как научных, так и художественных. Распространенным является мнение, что "поверить алгеброй гармонию" нельзя, а если и можно, то это будет как бы бесчувственно, неполноценно и формально (А.С. Пушкин, "Моцарт и Сольери"). Как ни парадоксально, именно алгебра, а точнее - отношения целых чисел, задающих звуковысотные соотношения, и определяют то, что мы называем гармонией в том смысле, что одни комбинации звуков звучат "хорошо" (гармонично), а другие — "плохо". Лектор не только покажет, но и даст услышать, как преобразовывались и изменялись математические принципы построения музыки с давних пор до наших дней.
-

Что заставляет взаимодействовать все в нашей Вселенной? Ускоряются ли тела или замедляются, меняют свое направление или мчатся вперед – почему они ведут себя именно так? Какие законы являются общими и для малейших частиц и для Галактик? С чего все началось, как развивается и как работает? Эти и другие вопросы волновали человека с самых древних времен… Где же ключ к пониманию тайн механической Вселенной? США, 1985 год.
-
Игорь Кричевер
Те из вас, кто катался на речных пароходах по каналам России, наверняка заметили одинокую, то ли стоящую, то ли бегущую волну, сопровождавшую ваш пароход. Это — солитон. Математическая теория этого явления природы (именно, как строить простейшие солитонные уравнения) будет объяснено на лекции. (Для понимания этого достаточны базовые знания по линейной алгебре.) Кроме того, речь пойдет о связанной с теорией солитонов классификации коммутирующих операторов, вытекающей отчасти из соображений алгебраической геометрии (которые на лекции будут пояснены).
-
Один из фактов субатомного мира заключается в том, что его объекты — такие как электроны или фотоны — совсем не похожи на привычные объекты макромира. Они ведут себя и не как частицы, и не как волны, а как совершенно особые образования, проявляющие и волновые, и корпускулярные свойства в зависимости от обстоятельств. Одно дело — это заявить, и совсем другое — связать воедино волновые и корпускулярные аспекты поведения квантовых частиц, описав их точным уравнением. Именно это и было сделано в соотношении де Бройля.
-
В повседневной жизни имеется два способа переноса энергии в пространстве — посредством частиц или волн. В обыденной жизни между двумя механизмами передачи энергии видимых противоречий не наблюдается. Так, баскетбольный мяч — это частица, а звук — это волна, и всё ясно. Однако в квантовой механике всё обстоит отнюдь не так просто. Даже из простейших опытов с квантовыми объектами очень скоро становится понятно, что в микромире привычные нам принципы и законы макромира не действуют. Свет, который мы привыкли считать волной, порой ведет себя так, будто состоит из потока частиц (фотонов), а элементарные частицы, такие как электрон или даже массивный протон, нередко проявляют свойства волны.
-

Колодец, пронзающий Землю насквозь — классический виртуальный объект, на примере которого можно изучить одновременно закон всемирного тяготения и гармонические колебания. Физики оценили время падения объекта в колодце, проходящем через центр Земли c учетом влияния сопротивления воздуха в колодце или возможного трения о его стенки. Последняя оценка показывает, что падение к центру Земли займет по меньшей мере 1,8 года.
-
Анатолий Голубев
Человеку даже без специального физического или технического образования несомненно знакомы слова «электрон, протон, нейтрон, фотон». А вот созвучное с ними слово «солитон» многие, вероятно, слышат впервые. Это и неудивительно: хотя то, что обозначается этим словом, известно более полутора столетий, надлежащее внимание солитонам стали уделять лишь с последней трети XX века. Солитонные явления оказались универсальными и обнаружились в математике, гидромеханике, акустике, радиофизике, астрофизике, биологии, океанографии, оптической технике. Что же это такое – солитон?
-
Владимир Захаров
Лекция академика РАН, доктора физико-математических наук, председателя научного совета РАН по нелинейной динамике, зав. Сектором математической физики в Физическом институте РАН им. Лебедева, профессора Университета Аризоны (США), дважды лауреата Государственной премии, лауреата медали Дирака Владимира Евгеньевича Захарова, прочитанной 27 мая 2010 года в Политехническом музее в рамках проекта “Публичные лекции Полит.ру”.
Далее >>>
|
|