Геометрия, анализ и арифметика фракталов
Фракталы можно в первом приближении описать как множества дробной размерности. В курсе в основном рассказано про ковер Серпинского (размерности log 23=1.585…) и ковер Аполлония размерности 1.308… (точное значение неизвестно!). Об этом написана книга «Повесть о двух фракталах». Аннотация к книге приводится также и по-английски.
Материалы:
Книга «Повесть о двух фракталах» (pdf 1.5 Mb);
Аннотация к книге на английском (pdf 144.1 Kb).
Кириллов Александр Александрович, доктор физико-математических наук, профессор факультета математики Пенсильванского университета (США), главный научный сотрудник ИППИ РАН.
Летняя школа «Современная математика», г. Дубна
23-27 июля 2007 г.
Похожее
-
Алексей Плюснин
Творческий союз АПОЗИЦИЯ: "нау-КА музы-КЕ и музы-КА нау-КЕ". Лекция "Некоторые аспекты применения теории фракталов в музыке или Боже храни Бенуа Мандельброта!" Видео- и аудио-интерактив от Алексея Плюснина. Научно-популярный фестиваль "Дни науки" Молодежная программа "Наука как предчувствие (Science as Suspense)". Санкт-Петербург, Грибоедов клуб. 23 апреля 2008 года.
-
Фильм посвящен удивительным математическим объектам — фракталам. Среди прочих ученых в фильме принимает участие Бенуа Мандельброт, который впервые ввел понятие фрактал.
-
Александр Кириллов
Одна из нерешённых проблем Гильберта — математическая формулировка физики. Эта задача была решена Ньютоном, Лагранжем и Гамильтоном для классической механики, а Шредингером и Гейзенбергом для квантовой механики. Однако, эти решения были совершенно различны. В первом случае математическим аппаратом была симплектическая геометрия, во втором — спектральная теория операторов. Переход от одной теории к другой физики называют квантованием. Тема занятий — перевод этого термина на язык математики.
-
Алексей Белов, Иван Митрофанов
В этом курсе будет рассказано о подстановочных системах довольно общего вида и о связанных с ними геометрических конструкциях, называемых фракталами Рози. Например, слово Трибоначчи 121312112131… состоит из цифр {1,2,3} и получается с помощью подстановки 1→12, 2→13, 3→1. Оказывается, что оно в некотором смысле устроено так же, как двумерный тор, разбитый на три части с фрактальной границей. (В то, что на первом рисунке изображена развёртка тора, трудно поверить, но тем не менее это так, и вторая картинка это иллюстрирует).
-
Документальный фильм «Измерения» – это два часа математики, постепенно выводящие вас в четвёртое измерение.
-
Николай Долбилин
Лекция прочитана 5 июля 2006 года в поселке Московский в рамках II конференции лауреатов Всероссийского конкурса учителей математики и физики фонда «Династия».
-
Сергей Нечаев
Беседа с доктором физико-математических наук, ведущим научным сотрудником сектора математической физики ФИАН; Directeur de Recherche au CNRS (CNRS — Национальный центр научных исследований) Universite Paris-Sud, Орсэ (Франция) Сергеем Нечаевым посвящена теме предстоящей лекции о топологии веревок, неевклидовой геометрии и фрактальной укладке ДНК в хромосомах.
-
Сергей Нечаев
Лекции доктора физико-математических наук, ведущего научного сотрудника сектора математической физики Физического Института им. П.Н. Лебедева РАН, Москва; Directeur de Recherche au CNRS (CNRS — Национальный центр научных исследований) Universite Paris-Sud, Орсэ, Франция Сергея Нечаева, прочитанной 11 апреля 2012 года в рамках проекта «Публичные лекции "Полит.ру"»
-
Владлен Тиморин
Множество Мандельброта — пожалуй, самый известный фрактал за пределами математического сообщества. Это множество дает описание того, как динамика квадратичного многочлена z^2+c меняется с изменением комплексного параметра c. Глядя лишь на расположение параметра c относительно Множества Мандельброта, можно много сказать про динамические свойства многочлена z^2+c (в то время как явное выражение для c, скажем, c=–1,5, далеко не так удобно). Мы обсудим структуру множества Мандельброта и, в частности, его (гипотетическую) топологическую модель.
-
Александр Кириллов
О своем пути в математику, о первых поездках за рубеж, работе в США рассказал замечательный ученый, докт. физ.-мат. наук, профессор факультета математики Пенсильванского университета (США), главный научный сотрудник ИППИ РАН Александр Александрович Кириллов.
Далее >>>
|
|