Главная ≫ Инфотека ≫ Математика ≫ Видео ≫ Некоторые аспекты применения теории фракталов в музыке, или Боже храни Бенуа Мандельброта! // Алексей Плюснин
Некоторые аспекты применения теории фракталов в музыке, или Боже храни Бенуа Мандельброта!
Творческий союз АПОЗИЦИЯ: "нау-КА музы-КЕ и музы-КА нау-КЕ".
Лекция "Некоторые аспекты применения теории фракталов в музыке или Боже храни Бенуа Мандельброта!"
Видео- и аудио-интерактив от Алексея Плюснина.
Научно-популярный фестиваль "Дни науки"
Молодежная программа "Наука как предчувствие (Science as Suspense)".
Санкт-Петербург, Грибоедов клуб.
23 апреля 2008 года.
Фракталы можно в первом приближении описать как множества дробной размерности. В курсе в основном рассказано про ковер Серпинского (размерности log[2]3=1.585…) и ковер Аполлония размерности 1.308… (точное значение неизвестно!).
Фильм посвящен удивительным математическим объектам — фракталам. Среди прочих ученых в фильме принимает участие Бенуа Мандельброт, который впервые ввел понятие фрактал.
«Грядущим поколениям ХХ век будет памятен лишь благодаря созданию теорий относительности, квантовой механики и хаоса... теория относительности разделалась с иллюзиями Ньютона об абсолютном пространстве-времени, квантовая механика развеяла мечту о детерминизме физических событий, и, наконец, хаос развенчал Лапласову фантазию о полной предопределенности развития систем». Эти слова известного американского историка и популяризатора науки Джеймса Глейка отражают огромную важность вопроса, который лишь вкратце освещается в статье, предлагаемой вниманию читателя. Наш мир возник из хаоса. Однако если бы хаос не подчинялся своим собственным законам, если бы в нем не было особой логики, он ничего не смог бы породить.
Множество Мандельброта — пожалуй, самый известный фрактал за пределами математического сообщества. Это множество дает описание того, как динамика квадратичного многочлена z^2+c меняется с изменением комплексного параметра c. Глядя лишь на расположение параметра c относительно Множества Мандельброта, можно много сказать про динамические свойства многочлена z^2+c (в то время как явное выражение для c, скажем, c=–1,5, далеко не так удобно). Мы обсудим структуру множества Мандельброта и, в частности, его (гипотетическую) топологическую модель.
В этом курсе будет рассказано о подстановочных системах довольно общего вида и о связанных с ними геометрических конструкциях, называемых фракталами Рози. Например, слово Трибоначчи 121312112131… состоит из цифр {1,2,3} и получается с помощью подстановки 1→12, 2→13, 3→1. Оказывается, что оно в некотором смысле устроено так же, как двумерный тор, разбитый на три части с фрактальной границей. (В то, что на первом рисунке изображена развёртка тора, трудно поверить, но тем не менее это так, и вторая картинка это иллюстрирует).
Лекция прочитана 5 июля 2006 года в поселке Московский в рамках II конференции лауреатов Всероссийского конкурса учителей математики и физики фонда «Династия».
Лекции доктора физико-математических наук, ведущего научного сотрудника сектора математической физики Физического Института им. П.Н. Лебедева РАН, Москва; Directeur de Recherche au CNRS (CNRS — Национальный центр научных исследований) Universite Paris-Sud, Орсэ, Франция Сергея Нечаева, прочитанной 11 апреля 2012 года в рамках проекта «Публичные лекции "Полит.ру"»
Беседа с доктором физико-математических наук, ведущим научным сотрудником сектора математической физики ФИАН; Directeur de Recherche au CNRS (CNRS — Национальный центр научных исследований) Universite Paris-Sud, Орсэ (Франция) Сергеем Нечаевым посвящена теме предстоящей лекции о топологии веревок, неевклидовой геометрии и фрактальной укладке ДНК в хромосомах.
Квазипериодические функции: что это такое, откуда возникают, проблемы их изучения, как появляется топология и динамические системы. Лекцию читает Новиков Сергей Петрович, академик РАН, доктор физико-математических наук, профессор.
Главная ≫ Инфотека ≫ Математика ≫ Видео ≫ Некоторые аспекты применения теории фракталов в музыке, или Боже храни Бенуа Мандельброта! // Алексей Плюснин