Узлы и косы
Первое занятие (лекция). Будет рассказано, что такое математическая теория узлов и зачем нужны их инварианты. Задача (трехмерная) о классификации узлов будет сведена к чисто комбинаторной двумерной задаче с помощью изящного инструмента — операций Райдемайстера. Затем будет показано, как вычисляется знаменитый инвариант узлов — полином Александера–Конвея (доказательство его существование останется в виде (серьезной!) задачи).
Второе занятие (семинар). Будет построен (со всеми доказательствами) еще более знаментый инвариант узлов — полином Джонса, за который в 1992 году австралийский математик Воан Джонс получил медаль Фильдса. Это будет сделано с помощью т.н. скобки Кауфмана, т.е. с помощью соображений, тесно связанных со статистической физикой. Мы научимся вычислять этот полином и докажем ряд его свойств.
Третье занятие (семинар). Его содержание будет зависеть от того, насколько мы продвинемся на предыдущих занятиях и (отчасти) от пожеланий слушателей. Либо мы закончим дальнейшим изучением свойств полинома Джонса, либо займемся теорией кос, либо будет рассказана аксиоматика инвариантов Васильева.
Лекция и занятия будут доступны и студентам, и школьникам. Необходимые формальные топологические определения будут сформулированы, но доказательство части вспомогательных тополого-геометрических лемм будут проведены неформально (но я надеюсь — интуитивно понятно).
Сосинский Алексей Брониславович, кандидат физико-математических наук.
Летняя школа «Современная математика», г. Дубна
22-27 июля 2008 г.
Похожее
-
Алексей Сосинский
В лекции будет сказано, что такое узлы (и их родственники — зацепления, косы, ленты), но вместо соответствующих теорий, будут рассказаны некоторые яркие «внешние» применения этих понятий, т. е. приложения к другим наукам. А именно: Индекс зацепления двух кривых и электромагнетизм; Перестройки по заузленным лентам и опровержения первоначального варианта его знаменитой гипотезы; Косы и оправдание существования позитрона (и вообще антимира); Заузленные ДНК; Простейшее зацепление и расслоение Хопфа.
-
Алексей Сосинский
Лекция начнется с демонстрации недавно обнаруженной серии физических экспериментов с проволочном контуром, который моделирует узлы (т.е. гладкие замкнутые кривые в пространстве). Оказывается, что этот контур — очень умный: он во многих случаях умеет распутывать тривиальный узел в круглую окружность, выполнять т.н. движения Рейдемейстера, движения Маркова, фокус Уитни, и всегда минимизирует т.н. индекс Уитни. Во второй части лекции будет рассмотрен один из красивейших подходов к изучению математической теории узлов, основанный на использовании т.н. «энергии узлов».
-
Алексей Сосинский
В лекции будут обсуждаться примеры сингулярных (особых) мыльных пленок, натянутых на проволочные контуры сложной формы (узлы, каркас куба и тетраэдра, и др.) Будут проводится демонстрации соответствующих экспериментов с проволоками и мыльным растворам, и на экране будут показаны фотографии и компьютерная графика изображений результатов. Оказывается, что на пленках возникают только два тина особенностей — так называемые “тройные линии” и “шестикрылые бабочки”, удивительным образом совпадающие с особенностями “специальных спайнов” (играющих ключевую роль в работах С. Матвеева и его школы по классификации трехмерных многообразий). Цель лекции — привлечь внимание слушателей к созданию (пока еще не существующей) математической теории сингулярных минимальных поверхностей.
-
Александра Скрипченко
Математик Александра Скрипченко о эффективных алгоритмах, представлениях лорда Кельвина и движениях Рейдемейстера.
-
Алексей Белов, Иван Митрофанов
В этом курсе будет рассказано о подстановочных системах довольно общего вида и о связанных с ними геометрических конструкциях, называемых фракталами Рози. Например, слово Трибоначчи 121312112131… состоит из цифр {1,2,3} и получается с помощью подстановки 1→12, 2→13, 3→1. Оказывается, что оно в некотором смысле устроено так же, как двумерный тор, разбитый на три части с фрактальной границей. (В то, что на первом рисунке изображена развёртка тора, трудно поверить, но тем не менее это так, и вторая картинка это иллюстрирует).
-
Владимир Арнольд
Ж. Л. Лагранж доказал, что последовательность неполных частных (начиная с некоторого места) периодична, если и только если число x — квадратичная иррациональность. Р. О. Кузьмин доказал, что в последовательности неполных частных почти любого вещественного числа доля d_m равных m неполных частных одинакова (для типичных вещественных чисел). Доля d_m убывает при m→∞ как 1/m^2 и её величина была предсказана Гауссом (ничего не доказавшим). В. И. Арнольда высказал (лет 20 назад) гипотезу, что статистика Гаусса–Кузьмина d_m выполняется также для периодов цепных дробей корней квадратных уравнений x^2+px+q=0 (с целыми p и q): если выписать вместе неполные частные, составляющие периоды всех цепных дробей корней таких уравнений с p^2+q^2≤R^2, то доля неполного частного m среди них будет стремиться к числу d_m при R→∞. В. А. Быковский со своими хабаровскими учениками доказали недавно эту давнюю гипотезу. Несмотря на это, вопрос о статистике не букв, а составленных из них слов [a_k+1, a_k+2,…, a_k+T], которые являются периодами цепных дробей каких-либо корней x уравнений x^2+px+q=0 далеко не решён.
-
Юрий Бурман
Число В вершин, число Р ребер и число Г граней выпуклого многогранника связаны соотношением В−Р+Г=2. Легко сообразить, что это широко известное утверждение не имеет прямого отношения к выпуклости: если на боку выпуклого многогранника сделать вмятину, то он перестанет быть выпуклым, а количество вершин, ребер и граней сохранится. В то же время для совершенно произвольного многогранника теорема неверна. В данном курсе мы выясним, в каких именно случаях эти утверждения верны и почему на самом деле это — одна и та же теорема. Также мы разберемся, как выглядят аналогичные утверждения для других поверхностей, и не только для поверхностей (а, например, для графов или для многомерной сферы).
-
Владимир Арнольд
Лекцию читает Арнольд Владимир Игоревич (1937–2010), доктор физико-математических наук, профессор, академик РАН. Летняя школа «Современная математика», г. Дубна, 20 июля 2003 г.
-
Георгий Шабат
Детские рисунки (dessins d'enfants) – термин, введённый Александром Гротендиком в 70-е годы прошлого века. С «детской» точки зрения этот термин означает граф, вложенный в поверхность; с взрослой – это объект, в котором закодированы различные структуры, относящиеся к далёким друг от друга областям математики. Под подсчётом детских рисунков понимается подсчёт количества детских рисунков ограниченной сложности, которая будет определена. В последние годы были получены замечательные результаты о количествах детских рисунков. Элементарная часть этих результатов будет изложена в курсе.
-
Сергей Новиков
Квазипериодические функции: что это такое, откуда возникают, проблемы их изучения, как появляется топология и динамические системы. Лекцию читает Новиков Сергей Петрович, академик РАН, доктор физико-математических наук, профессор.
Далее >>>
|
|