Как физика связана с теорией узлов? Как математики доказали, что есть универсальные алгоритмы развязывающие узел? Что такое тривиальный узел и как можно представить его диаграммой? Об этом рассказывает сотрудник Лаборатории геометрических методов математической физики имени Н.Н. Боголюбова мехмата МГУ Александра Скрипченко.
В лекции будет сказано, что такое узлы (и их родственники — зацепления, косы, ленты), но вместо соответствующих теорий, будут рассказаны некоторые яркие «внешние» применения этих понятий, т. е. приложения к другим наукам. А именно: Индекс зацепления двух кривых и электромагнетизм; Перестройки по заузленным лентам и опровержения первоначального варианта его знаменитой гипотезы; Косы и оправдание существования позитрона (и вообще антимира); Заузленные ДНК; Простейшее зацепление и расслоение Хопфа.
Будет рассказано, что такое математическая теория узлов и зачем нужны их инварианты. Задача (трехмерная) о классификации узлов будет сведена к чисто комбинаторной двумерной задаче с помощью изящного инструмента — операций Райдемайстера. Затем будет показано, как вычисляется знаменитый инвариант узлов — полином Александера–Конвея. Будет построен (со всеми доказательствами) еще более знаментый инвариант узлов — полином Джонса, за который в 1992 году австралийский математик Воан Джонс получил медаль Фильдса. Это будет сделано с помощью т.н. скобки Кауфмана, т.е. с помощью соображений, тесно связанных со статистической физикой. Мы научимся вычислять этот полином и докажем ряд его свойств.
Простое двумерное периодическое движение вязкой жидкости может стать хаотическим, что приведёт к эффективному перемешиванию. Эксперименты и компьютерное моделирование проясняют механизм этого явления.
Движение физического тела в одном измерении не зависит от его движения в двух других измерениях. Например, траектория полета пушечного ядра представляет собой совокупность двух независимых траекторий движения: равномерного движения по горизонтали со скоростью, приданной ядру пушкой, и равноускоренного движения по вертикали под воздействием земного притяжения.
Аристотель и Галилей о падении тел. Силы трения. Скольжение и качение. Статика, кинематика. Векторная природа сил и скоростей. Сложение и разложение. Независимость действий и движений. Сохранение количества движения. Момент силы и момент импульса. Гироскопы. Скамейка Жуковского. Вращательное движение. Момент силы и момент импульса в плоском варианте вращения. Вращение твёрдого тела и момент инерции. Работа, энергия, законы сохранения. Неинерциальные системы и силы. Центробежный эффект. Сила Кориолиса. Задача Эйнштейна о чаинках. Атмосферное давление. Законы Паскаля и Архимеда. Парадокс Архимеда.
Вам, возможно, доводилось испытывать странные физические ощущения в скоростных лифтах: когда лифт трогается вверх (или тормозит при движении вниз), вас придавливает к полу, и вам кажется, что вы на мгновение потяжелели; а в момент торможения при движении вверх (или старта при движении вниз) пол лифта буквально уходит у вас из-под ног. Сами, возможно, того не сознавая, вы испытываете при этом на себе действие принципа эквивалентности инертной и гравитационной масс. Когда лифт трогается вверх, он движется с ускорением, которое приплюсовывается к ускорению свободного падения в неинерциальной (движущейся с ускорением) системе отсчета, связанной с лифтом, и ваш вес увеличивается. Однако, как только лифт набрал «крейсерскую скорость», он начинает двигаться равномерно, «прибавка» в весе исчезает, и ваш вес возвращается к привычному для вас значению. Таким образом, ускорение производит тот же эффект, что и гравитация.
Законы Ньютона — в зависимости от того, под каким углом на них посмотреть, — представляют собой либо конец начала, либо начало конца классической механики. В любом случае это поворотный момент в истории физической науки — блестящая компиляция всех накопленных к тому историческому моменту знаний о движении физических тел в рамках физической теории, которую теперь принято именовать классической механикой. Можно сказать, что с законов движения Ньютона пошел отсчет истории современной физики и вообще естественных наук.
Молекулы жидкости испытывают силы взаимного притяжения — на самом деле, именно благодаря этому жидкость моментально не улетучивается. На молекулы внутри жидкости силы притяжения других молекул действуют со всех сторон и поэтому взаимно уравновешивают друг друга. Молекулы же на поверхности жидкости не имеют соседей снаружи, и результирующая сила притяжения направлена внутрь жидкости. В итоге вся поверхность воды стремится стянуться под воздействием этих сил. По совокупности этот эффект приводит к формированию так называемой силы поверхностного натяжения, которая действует вдоль поверхности жидкости и приводит к образованию на ней подобия невидимой, тонкой и упругой пленки.
Закон квадрата — куба представляет собой следующий принцип: если объект пропорционально (то есть с помощью преобразования подобия) увеличивается (уменьшается) в размере, его новый объём будет пропорционален кубу масштабирующего коэффициента, а новая площадь его поверхности — пропорциональна квадрату масштабирующего коэффициент. Этот закон находит своё применение в технике и биомеханике.