Атомы, из которых мы состоим, стабильны и неизменны. Однако появились они в разное время. Их объединяет одно: все они — продукт жизнедеятельности самой Вселенной. Какие-то появились в результате Большого Взрыва, какие-то родились в недрах звёзд, а какие-то только при их гибели. По сути, мы — звёздный прах. Речь пойдет о процессах астрохимии, приведших к появлению разных атомов, которыми заполнена вселенная.
Алексей Паевский — научный журналист, химик-органик, главный редактор журнала «За науку» МФТИ.
Какого цвета могут быть внеземные растения? С научной точки зрения это отнюдь не праздный вопрос, так как цвет поверхности планеты может указать нам, есть ли на ней жизнь, а точнее — живые организмы, усваивающие энергию света своей звезды путем фотосинтеза.
Химики показали, что в гидротермальных источниках при температуре свыше 80 градусов может происходить абиогенный синтез органических веществ, в частности аминокислот, из угарного газа, цианистого водорода и других неорганических соединений. Это открытие — важный аргумент в пользу гипотезы, согласно которой жизнь на Земле зародилась в горячих вулканических источниках.
Самый редкий элемент в земной коре, самым тяжелый газ, самый тугоплавкий материал, самый сильный стабильный окислитель, самая сильная кислота, самый сильный яд, самое сладкое вещество — и другие рекорды.
Взрывная история химии — это история строительных блоков, которые составляют весь наш мир, история химических элементов. Все в мире состоит из элементов — земля по которой мы ходим, воздух которым мы дышим, даже мы сами. Несмотря на это, на протяжении веков этот мир понимался совершенно неправильно. В трехсерийном фильме профессор теоретической физики Джим Аль-Халили проследит удивительную историю о том, как элементы были обнаружены и сведены в таблицу. Он пройдет по следам первопроходцев, раскрывших эти секреты и создавших новую науку, которая привела нас к эпохе современности.
Люминесценция классифицируется по способам возбуждения, то есть по способам перевода материала в возбужденное состояние. Это может быть фотолюминесценция, происходящая при поглощении света, электролюминесценция при протекании электрического тока, может быть хемилюминесценция, происходящая под действием химических реакций, и другие. Химик Валентина Уточникова об антистоксовой люминесценции, биовизуализации и повышении эффективности у солнечных батарей.
Известная из школьного курса химия говорит преимущественно о том, что случается при «нормальных условиях». Принципиальное изменение этих условий может вести к изменению не только физических, но и химических свойств, что помогает создавать принципиально новые материалы.
Люминесценция — это одно из самых красивых явлений. Оно относится к тем явлениям, которые человечество наблюдает уже очень много лет, хотя объяснять научилось совсем недавно. К люминесценции относится северное сияние, свечение светлячков, свечение морской воды относится к люминесценции проживающего там планктона. И все эти явления человечество наблюдает практически все время своего существования. Химик Валентина Уточникова о влиянии спектроскопии на развитие люминесценции, создании светодиодов и флуоресценции.
Сложно переоценить ту роль, которую люминесценция играет в современном мире. Одним из самых важных ее применений на сегодняшний день стоит считать электролюминесценцию. В 2014 году Нобелевскую премию по физике присудили как раз за открытие в области электролюминесценции, а точнее, за открытие неорганического полупроводникового светодиода — LED. Химик Валентина Уточникова о люминесцирующих полупроводниках, триплетном и синглетном состояниях и OLED-дисплеях.
Лекции доктора физико-математических наук, ведущего научного сотрудника сектора математической физики Физического Института им. П.Н. Лебедева РАН, Москва; Directeur de Recherche au CNRS (CNRS — Национальный центр научных исследований) Universite Paris-Sud, Орсэ, Франция Сергея Нечаева, прочитанной 11 апреля 2012 года в рамках проекта «Публичные лекции "Полит.ру"»
Вместе с профессором Маркусом дю Сотоем мы отправимся в удивительное путешествие в мир измерений. Он попытается узнать, почему мы постоянно хотим измерить и определить количество всего, что нас окружает. Мы узнаем, как были определены такие понятия как метр, секунда и величина веса, а также как мы научились измерять высокие температуры, свет и электричество.