Математика для гуманитариев
Лекции были прочитаны доктором физико-математических наук Алексеем Владимировичем Савватеевым в Университете Дмитрия Пожарского (Москва) в 2014 году.
Похожее
-
Алексей Савватеев
Лекция математика Алексея Владимировича Савватеева в СУНЦ МГУ про великие математические революции и нерешенные задачи, многие из которых уже решены, а некоторые — ждут своих героев. Для старших и "продвинутых" школьников, интересующихся математикой.
-
Дмитрий Фон-Дер-Флаасс
Мы предлагаем вашему вниманию запись (с небольшими сокращениями и с сохранением авторского стиля) лекции, прочитанной Дмитрием Фон-Дер-Флаассом во Всероссийском детском центре «Орленок» в 2009 году.
-
Максим Казарян
Непрерывная дробь — это выражение вида a0+(1/(a1+1/(a2+(1/(a3+… ))))), (конечное или бесконечное), где ai — натуральные числа. Выражения такого вида выглядят довольно забавными, но важность их заключается вовсе не в этом, а в том, что теория непрерывных дробей — это теория наилучших приближений иррациональных чисел рациональными. Например приближениие π≈22/7 точнее, чем более привычное 3,14=314/100, несмотря на то, что у первого знаменатель гораздо меньше второго. Каким образом это происходит, будет объяснено на занятиях.
-
В формате «Точка зрения» ПостНаука знакомит читателей с мнениями наших экспертов об актуальных проблемах общества, образования и науки. В новом выпуске мы попросили наших авторов высказать свою точку зрения на основные проблемы преподавания математики в школе.
-
Алексей Савватеев
Вводный миникурс по алгебре, ориентированный на студентов-первокурсников, но всем остальным может быть интересно тоже.
-
Алексей Савватеев
Таблицы сложения и умножения остатков. Многочлены с коэффициентами в остатках. Теорема Безу над любой системой остатков. Парадоксы числа корней. Таблицы умножения по простому модулю. Простейшие конечные поля. Основная теорема о корнях многочленов с коэффициентами в поле. Поля из p элементов. Теоретико-групповые методы: теорема Лагранжа и Малая теорема Ферма. Бином Ньютона, автоморфизм возведения в p-ю степень и второе доказательство теоремы Ферма. Теорема Вильсона. Конечные поля из p^r элементов, мультипликативная группа и структура их вложимости друг в друга. Единственность конечного поля.
-
Алексей Савватеев
В миникурсе ликвидируются пробелы школьного образования, относящиеся к теории групп и к конкретным примерам групп. Будут установлены базовые факты про вычеты, доказана малая теорема Ферма, исследованы подгруппы групп перестановок на трёх и четырёх символах, введено понятие нормальной подгруппы данной группы и простоты группы. Затем будет доказано, что группа чётных перестановок на n≥5 символах — простая (что откроет желающим дорогу к вопросам о разрешимости алгебраических уравнений в радикалах), а также что подгруппа переносов плоскости (пространства) — нормальная в группе всех (аффинных) движений соответствующего объекта. Маломерные группы движений получат полную характеризацию (теорема Шаля и законы композиции движений разных видов).
-
Александр Буфетов
Традиция отмечать неофициальный день числа Пи зародилась в Соединенных Штатах почти 30 лет назад, когда известный американский физик Ларри Шоу обратил внимание на то, что 14 марта совпадает с первыми тремя цифрами знаменитой "архимедовой константы" — 3,14. На следующий год, с подачи Шоу, в этот день посетителей музея начали угощать пирогами (из-за сходного звучания слов "пирог" и "Пи" английском языке "pi" — "pie"), после чего к ежегодному отмечанию этой даты постепенно присоединились физики и математики со всего мира.
-
Георгий Шабат
Программа курса: История. Первые оценки. Проблема соизмеримости длины окружности с ее диаметром. Бесконечные ряды, произведения и другие выражения для π. Сходимость и ее качество. Выражения, содержащие π. Последовательности, быстро сходящиеся к π. Современные методы вычисления π, использование компьютеров. Об иррациональности и трансцендентности π и некоторых других чисел. Предварительных знаний для понимания курса не требуется.
-
Алексей Савватеев
Чем определяется успех на математических олимпиадах? Коррелируют ли олимпиадные успехи с будущими научными достижениями? Какие навыки необходимы для того, чтобы стать настоящим учёным? Рассказывает Алексей Савватеев, математик и матэкономист, доктор физико-математических наук, научный руководитель Кавказского Математического Центра АГУ, ректор Университета Дмитрия Пожарского, профессор МФТИ, научный руководитель ЦДПО РЭШ, ведущий научный сотрудник ЦЭМИ РАН, популяризатор математики среди детей и взрослых.
Далее >>>
|
|