Непрерывные дроби
Непрерывная дробь — это выражение вида
(конечное или бесконечное), где — натуральные числа. Выражения такого вида выглядят довольно забавными, но важность их заключается вовсе не в этом, а в том, что теория непрерывных дробей — это теория наилучших приближений иррациональных чисел рациональными. Например приближениие точнее, чем более привычное , несмотря на то, что у первого знаменатель гораздо меньше второго. Каким образом это происходит, будет объяснено на занятиях. Курс предполагается доступным школьникам.
Казарян Максим Эдуардович, доктор физико-математических наук.
Летняя школа «Современная математика», посвященная памяти Виталия Арнольда, 2017.
г. Дубна, дом отдыха «Ратмино»
20-22 июля 2017 г.
Похожее
-
Александр Буфетов
Традиция отмечать неофициальный день числа Пи зародилась в Соединенных Штатах почти 30 лет назад, когда известный американский физик Ларри Шоу обратил внимание на то, что 14 марта совпадает с первыми тремя цифрами знаменитой "архимедовой константы" — 3,14. На следующий год, с подачи Шоу, в этот день посетителей музея начали угощать пирогами (из-за сходного звучания слов "пирог" и "Пи" английском языке "pi" — "pie"), после чего к ежегодному отмечанию этой даты постепенно присоединились физики и математики со всего мира.
-
Владимир Арнольд
Ж. Л. Лагранж доказал, что последовательность неполных частных (начиная с некоторого места) периодична, если и только если число x — квадратичная иррациональность. Р. О. Кузьмин доказал, что в последовательности неполных частных почти любого вещественного числа доля d_m равных m неполных частных одинакова (для типичных вещественных чисел). Доля d_m убывает при m→∞ как 1/m^2 и её величина была предсказана Гауссом (ничего не доказавшим). В. И. Арнольда высказал (лет 20 назад) гипотезу, что статистика Гаусса–Кузьмина d_m выполняется также для периодов цепных дробей корней квадратных уравнений x^2+px+q=0 (с целыми p и q): если выписать вместе неполные частные, составляющие периоды всех цепных дробей корней таких уравнений с p^2+q^2≤R^2, то доля неполного частного m среди них будет стремиться к числу d_m при R→∞. В. А. Быковский со своими хабаровскими учениками доказали недавно эту давнюю гипотезу. Несмотря на это, вопрос о статистике не букв, а составленных из них слов [a_k+1, a_k+2,…, a_k+T], которые являются периодами цепных дробей каких-либо корней x уравнений x^2+px+q=0 далеко не решён.
-
Георгий Шабат
В школе нам всем прививается ошибочное представление о том, что на множестве рациональных чисел Q имеется единственное естественное расстояние (модуль разности), относительно которого все арифметические операции непрерывны. Однако существует ещё бесконечное множество расстояний, так называемых p-адических, по одному на каждое число p. Согласно теореме Островского, «обычное» расстояние вместе со всеми p-адическими уже действительно исчерпывают все разумные расстояние Q. Термин адельная демократия введен Ю. И. Маниным. Согласно принципу адельной демократии, все разумные расстояния на Q равны перед законами математики (может быть, лишь традиционное «чуть=чуть равнее…». В курсе будет введено кольцо аделей, позволяющее работать со всеми этими расстояниями одновременно.
-
Владимир Успенский
В этой книге говориться о математике как о части культуры духовной. Данный текст писался не для математиков, а скорее для гуманитариев. Поэтому при его составлении в ряде случаев приходилось выбирать между понятностью и точностью. Предпочтение отдавалось понятности. Очерчивая место математики в современной культуре, автор пытается прояснить для читателей-нематематиков некоторые основные понятия и проблемы «царицы наук».
-
Ричард Фейнман
Он берет счеты: жжжжжжжжжжжжжжжж — «Да», — соглашается он. И тут до меня доходит: он не знает чисел. Когда у тебя есть счеты, не нужно запоминать множество арифметических комбинаций; нужно просто научится щелкать костяшками вверх-вниз. Нет необходимости запоминать, что 9 + 7 = 16; ты просто знаешь, что когда прибавляешь 9, то нужно передвинуть десятичную костяшку вверх, а единичную — вниз. Поэтому основные арифметические действия мы выполняем медленнее, зато мы знаем числа.
-
Ученые из Оксфордского университета заявили, что самым ранним известным употреблением цифры 0 для обозначения отсутствия значения разряда (как в числе 101) следует считать текст индийского манускрипта Бахшали.
-
Василий Писпанен
Кто не играл в детстве в игру "назови самое большое число"? Миллионы, триллионы и прочие "-оны" представить в уме уже сложно, но мы с вами попробуем разобрать "мастодонта" в математике — число Грэма.
-
Почему минус один умножить на минус один равно плюс один? Почему минус один умножить на плюс один равно минус один? Проще всего ответить: «Потому что таковы правила действий над отрицательными числами». Правила, которые мы учим в школе и применяем всю жизнь. Однако учебники не объясняют, почему правила именно такие. Мы сначала постараемся понять это, исходя из истории развития арифметики, а потом ответим на этот вопрос с точки зрения современной математики.
-
Леон Тахтаджян
Это будут четыре коротеньких рассказика. Начнем мы с чисел, потом поговорим о движении, об изменении, затем мы обсудим формы и размеры, а затем — начало и конец. В таком несколько зашифрованном стиле мы и попробуем посмотреть на математику изнутри и снаружи, причем именно как на предмет. То, о чем математики мыслят и чем живут, — об этом мы с вами сможем поговорить потом. Мы увидим, что некоторые вещи, которые нам кажутся очевидными, таковыми совсем не являются. Простые вещи могут оказаться сложными, а сложные — простыми.
-
BBC
Как «единица» помогла построить первые города и великие империи? Как вдохновляла выдающиеся умы человечества? Какую роль в появлении денег она сыграла? Как «единица» объединилась с нулем, чтобы править современным миром? История единицы неразрывно связана с историей европейской цивилизации. Терри Джонс отправляется в юмористическое путешествие с целью собрать воедино удивительную историю нашего самого простого числа. С помощью компьютерной графики в этой программе единица оживает в самых различных испостасях. Из истории единицы становится ясно, откуда появились современные числа, и каким образом изобретение нуля спасло нас от необходимости сегодня использовать римские цифры.
Далее >>>
|
|