Кто не играл в детстве в игру "назови самое большое число"? Миллионы, триллионы и прочие "-оны" представить в уме уже сложно, но мы с вами попробуем разобрать "мастодонта" в математике — число Грэма.
Василий Писпанен, старший инженер-программист ООО "Белый кИТ", аспирант ГГУ им. Ф.Скорины.
Корректно ответить на этот вопрос нельзя, поскольку числовой ряд не имеет верхнего предела. Так, к любому числу достаточно всего лишь прибавить единицу, чтобы получить число ещё большее. Хотя сами числа бесконечны, собственных названий у них не так уж и много, так как большинство из них довольствуются именами, составленными из чисел меньших. Понятно, что в конечном наборе чисел, которых человечество наградило собственным именем, должно быть какое-то наибольшее число. Но как оно называется и чему оно равно? Давайте же, попробуем в этом разобраться и заодно узнать, насколько большие числа придумали математики.
В 1980 году Книга рекордов Гиннесса повторила утверждения Гарднера, ещё больше подогрев интерес публики к этому числу. Число Грехема в невообразимое количество раз больше, чем другие хорошо известные большие числа, такие, как гугол, гуголплекс и даже больше, чем число Скьюза и число Мозера. На самом деле вся наблюдаемая вселенная слишком мала для того, чтобы вместить в себя обыкновенную десятичную запись числа Грехема.
Ученые из Оксфордского университета заявили, что самым ранним известным употреблением цифры 0 для обозначения отсутствия значения разряда (как в числе 101) следует считать текст индийского манускрипта Бахшали.
Как «единица» помогла построить первые города и великие империи? Как вдохновляла выдающиеся умы человечества? Какую роль в появлении денег она сыграла? Как «единица» объединилась с нулем, чтобы править современным миром? История единицы неразрывно связана с историей европейской цивилизации. Терри Джонс отправляется в юмористическое путешествие с целью собрать воедино удивительную историю нашего самого простого числа. С помощью компьютерной графики в этой программе единица оживает в самых различных испостасях. Из истории единицы становится ясно, откуда появились современные числа, и каким образом изобретение нуля спасло нас от необходимости сегодня использовать римские цифры.
Мы знаем о Диофанте немного. Кажется, он жил в Александрии. Никто из греческих математиков не упоминает его до IV века, так что он вероятно жил в середине III века. Самая главная работа Диофанта, «Арифметика» (Ἀριθμητικά), состоялась в начале из 13 «книгах» (βιβλία), т. е. главах. Мы сегодня имеем 10 из них, а именно: 6 в греческом тексте и 4 других в средневековом арабском переводе, место которых в середине греческих книг: книги I-III по-гречески, IV-VII по-арабски, VIII-X по-гречески. «Арифметика» Диофанта прежде всего собрание задач, всего около 260. Теории, по правде говоря, нет; имеются только общие инструкции в введении книги, и частные замечания в некоторых задачах, когда нужно. «Арифметика» уже имеет черты алгебраического трактата. Сперва Диофант пользуется разными знаками, чтобы выражать неизвестное и его степени, также и некоторые вычисления; как и все алгебраические символики средних веков, его символика происходит от математических слов. Потом, Диофант объясняет, как решить задачу алгебраическим способом. Но задачи Диофанта не алгебраические в обычном смысле, потому что почти все сводятся к решению неопределённого уравнения или систем таких уравнений.
К третьему году жизни большинство из нас уже умеют считать. С тех пор, как мы постигаем магию чисел, нас ничто не может остановить. Хотя концепция бесконечности и выглядит довольно безобидно, просто продолжайте считать, и мир представится в совсем ином свете! Математикам удалось выявить огромное количество бесконечностей, причем каждая последующая оказывается больше предыдущей. Если Вселенная действительно бесконечна, последствия могут быть еще более непредсказуемы и удивтельными. В бесконечной Вселенной может существовать бесконечное количество копий Земли и... Ваших копий! Возможно, что есть бесконечные мульти-вселенные, которые содержат нашу Вселенную и которые старше нашего времени. Этот фильм, основанный на математических теориях, — попытка построения представления о бесконечности всего сущего.
Всем говорят в школе, что число π иррационально и даже — трансцендентно, т. е. не является корнем многочлена с целыми коэффициентами. Имеется изящное и вполне элементарное доказательство Эрмита иррациональности числа π (требующее только знания интегрирования по частям — понимания как вычислить интеграл ∫ x^k sin(x)dx в пределах от a до b). Наша цель — доказательство теоремы Линдемана–Веерштрасса (если α_i линейно независимые над Q алгебраические числа, то e^(α_i) алгебраически независимы), а также теоремы Гельфонда (если числа α ≠ 0,1; β ∉ Q алгебраические, то αβ есть число трансцендентное).
Теория вероятностей и статистика, фокусы с картами, основанные на циклических перестановках, визуализация масштаба числа возможных перестановок 52 карт — 52!
Он берет счеты: жжжжжжжжжжжжжжжж — «Да», — соглашается он. И тут до меня доходит: он не знает чисел. Когда у тебя есть счеты, не нужно запоминать множество арифметических комбинаций; нужно просто научится щелкать костяшками вверх-вниз. Нет необходимости запоминать, что 9 + 7 = 16; ты просто знаешь, что когда прибавляешь 9, то нужно передвинуть десятичную костяшку вверх, а единичную — вниз. Поэтому основные арифметические действия мы выполняем медленнее, зато мы знаем числа.
Это будут четыре коротеньких рассказика. Начнем мы с чисел, потом поговорим о движении, об изменении, затем мы обсудим формы и размеры, а затем — начало и конец. В таком несколько зашифрованном стиле мы и попробуем посмотреть на математику изнутри и снаружи, причем именно как на предмет. То, о чем математики мыслят и чем живут, — об этом мы с вами сможем поговорить потом. Мы увидим, что некоторые вещи, которые нам кажутся очевидными, таковыми совсем не являются. Простые вещи могут оказаться сложными, а сложные — простыми.