Лекция математика Алексея Владимировича Савватеева в СУНЦ МГУ про великие математические революции и нерешенные задачи, многие из которых уже решены, а некоторые — ждут своих героев. Для старших и "продвинутых" школьников, интересующихся математикой.
Таблицы сложения и умножения остатков. Многочлены с коэффициентами в остатках. Теорема Безу над любой системой остатков. Парадоксы числа корней. Таблицы умножения по простому модулю. Простейшие конечные поля. Основная теорема о корнях многочленов с коэффициентами в поле. Поля из p элементов. Теоретико-групповые методы: теорема Лагранжа и Малая теорема Ферма. Бином Ньютона, автоморфизм возведения в p-ю степень и второе доказательство теоремы Ферма. Теорема Вильсона. Конечные поля из p^r элементов, мультипликативная группа и структура их вложимости друг в друга. Единственность конечного поля.
В миникурсе ликвидируются пробелы школьного образования, относящиеся к теории групп и к конкретным примерам групп. Будут установлены базовые факты про вычеты, доказана малая теорема Ферма, исследованы подгруппы групп перестановок на трёх и четырёх символах, введено понятие нормальной подгруппы данной группы и простоты группы. Затем будет доказано, что группа чётных перестановок на n≥5 символах — простая (что откроет желающим дорогу к вопросам о разрешимости алгебраических уравнений в радикалах), а также что подгруппа переносов плоскости (пространства) — нормальная в группе всех (аффинных) движений соответствующего объекта. Маломерные группы движений получат полную характеризацию (теорема Шаля и законы композиции движений разных видов).
Чем определяется успех на математических олимпиадах? Коррелируют ли олимпиадные успехи с будущими научными достижениями? Какие навыки необходимы для того, чтобы стать настоящим учёным? Рассказывает Алексей Савватеев, математик и матэкономист, доктор физико-математических наук, научный руководитель Кавказского Математического Центра АГУ, ректор Университета Дмитрия Пожарского, профессор МФТИ, научный руководитель ЦДПО РЭШ, ведущий научный сотрудник ЦЭМИ РАН, популяризатор математики среди детей и взрослых.
Лекция доктора физико-математических наук, ведущего научного сотрудника Отделения теоретической физики Физического института имени П.Н. Лебедева РАН (ФИАН), переводчика, члена жюри премии «Просветитель» Алексея Михайловича Семихатова, прочитанная 9 сентября 2012 года в рамках цикла «Публичных лекций «Полит.ру» на книжном фестивале под открытым небом BookMarket в парке искусств «Музеон».
Лекция прочитана 5 июля 2006 года в поселке Московский в рамках II конференции лауреатов Всероссийского конкурса учителей математики и физики фонда «Династия».
1 февраля 2015 года не стало талантливого математика, докт. физ.-мат.наук, старшего научного сотрудника Санкт-Петербургского отделения Математического института РАН Сергея Васильевича Дужина. Публикуем расшифровку его лекции «Гриша Перельман, яблоко и бублик», с которой он выступил 22 сентября 2011 года.
Геометрия — классическая Евклидова, Лобачевского, проективная и сферическая — не получает достаточного внимания в программах современных мат.факультетов (не говоря уже о школах). В то же время она наглядна и на редкость красива. Многие утверждения визуально очевидны и в то же время неожиданные (почему самолёт, летящий из Иркутска в Лиссабон, стартует сперва в направлении Норильска?) За 8 лекций слушатели ознакомятся с начальными сведениями в этой области математики, берущей своё начало более двух тысячелетий назад. Закончим мы гораздо более сложным материалом, непосредственно выводящим на современные разделы науки. Будут затронуты основы теории групп и алгебр Ли.
Зачем математики придумывают всё новые неразрешимые задачи? Зачем нужна современная математика? Среди ученых нет ни одного, кто разбирался бы во всех областях современных математических наук. А математики придумывают все новые и новые неразрешимые задачи, и потом десятилетиями бьются над ними. Зачем все это? И какое отношение математика имеет к нашей жизни? Гость программы доктор физико-математических наук Алексей Савватеев. Беседует Алексей Семихатов.