Как по одному проводу или радиоканалу одновременно разговаривают миллионы? Кодовое разделение каналов CDMA (Code Division Multiple Access) на основе ортогональной системы векторов.
Опойцев Валерий Иванович, доктор физико-математических наук, профессор МФТИ, гл. н. с. ИПУ РАН.
Если что и даёт ясное представление о высшей математике, так это линейная алгебра. Барьер повседневности здесь преодолевается легко и просто. При этом оказывается, что удивительные вещи находятся не в туманной дали, а совсем рядом. В этом курсе: линейные задачи и векторы, линейные преобразования и матрицы, элементарные преобразования, теория определителей, системы уравнений, замена координат, собственные значения и собственные векторы, операторы на комплексной плоскости, спектральная теория, квадратичные формы, сопряжённое пространство, триангуляция Шура, функции от матриц, матричные ряды.
Каждый день мы пользуемся банковскими картами и даже не подозреваем, как легко с них украсть деньги. На лекции вы узнаете простейшие способы защиты денежного кусочка пластика.
Теория информации — математическая дисциплина, в которой одновременно применяются методы многих разделов математики: теории вероятностей, теории алгоритмов, комбинаторики. Она занимается, в числе прочих, вопросами — как лучше всего сжать файл? Сколько информации может содержать данное сообщение? Как возможно точно передать сообщение, несмотря на помехи в канале связи? Как защитить сообщение от несанкционированного доступа? Ключевые идеи о том как решать перечисленные задачи были изложены в статье К. Шеннона «Математическая теория информации», где впервые было введено понятие энтропии (количества информации) и намечены контуры будущей теории. Мы займёмся введением в теорию сжатия дискретных данных (в отличие от непрерывных; там — своя специфика). Рассмотрим несколько алгоритмов, которые применяются в универсальных архиваторах (zip, rar). А также сделаем первые шаги (определим понятия и докажем начальные теоремы) на пути, ведущем к теоретическому обоснованию эффективности этих алгоритмов.
При передаче и хранении информация портится (шум в телефонной трубке, ошибки жесткого диска и так далее). Чтобы восстановить исходное сообщение в систему передачи следует ввести избыточность, иными словами, передавать вместо него более длинное закодированное сообщение. Так возникает понятие корректирующего кода (кода, исправляющего ошибки). Математически это приводит к задаче упаковки шаров в конечномерном векторном пространстве над конечным полем. Эта задача, в свою очередь, оказывается в значительной части эквивалентна проблеме расположения точек в проективном пространстве “в наиболее общем положении”. Здесь уже недалеко и до алгебраической геометрии. Конструкцию кодов по алгебраической кривой нетрудно рассказать, когда эта кривая — прямая.
Теория кодирования – это отличный повод поговорить о красивых задачах из алгебры и комбинаторики, о линейной алгебре и алгебраической геометрии над конечными полями, конечных геометриях, простых группах и алгоритмах, связанных с передачей информации. Программа курса: Основные задачи теория кодирования. Коды, исправляющие ошибки. Расстояние Хемминга и неравенство треугольника. Предварительные сведения из алгебры. Строение конечных полей. Линейная алгебра над конечными полями. Линейные коды и их характеристики. Код Хемминга. Совершенные коды. Двойственный код и тождество Мак-Вильямса. Эквивалентность кодов. Методы вычисления минимального расстояния для подпространства. Циклические коды и главные идеалы. Алгеброгеометрические коды. Грассманианы и плюккеровы координаты. Грассмановы коды и минимальные расстояния. Точки на минимальной сфере. Алгоритмы декодирования. Синдромы и минимальные представители. Коды Голея. Конечные геометрии и группы Матье.
В этом курсе изучается такой замечательный и вполне элементарный объект, как конечномерные коммутативные ассоциативные алгебры над комплексными числами. Здесь достаточно легко доказать первые структурные результаты, но получить полную классификацию едва ли возможно. Мы обсудим различные техники работы с конечномерными алгебрами (максимальные идеалы и локальные алгебры, фильтрации и градуировки, последовательность Гильберта-Самюэля и цоколь) и получим явное описание алгебр малых размерностей. Оказывается, конечномерные алгебры тесно связаны с действиями с открытой орбитой коммутативных групп матриц на аффинных и проективных пространствах. Мы объясним эту связь. В процессе объяснения естественно возникнут такие понятия как экспонента линейного оператора, представление группы и циклический модуль, алгебра Ли и ее универсальная обертывающая.
Если назвать точки на плоскости «прямыми», прямые на плоскости «точками», а «прямой», проходящей через две «точки», назвать точку пересечения соответствующих прямых, то (при правильном понимании) полученная «плоскость» будет обладать всеми свойствами обычной плоскости. Этот эффект известен в математике под названием проективной двойственности. Проективная двойственность небезынтересна уже при работе исключительно с точками и прямыми на плоскости и вдвойне интересна при работе с «искривленными» геометрическими фигурами: кривыми, поверхностями и многообразиями более высокой размерности.
Рассмотрим сумму двух эрмитовых матриц A и B. Это снова будет эрмитова матрица. В 1912 году Герман Вейль задался таким вопросом: что можно сказать о ее собственных значениях, если известны собственные значения матриц A и В? Во-первых, ясно, что след A+B будет равен сумме следов исходных матриц; во-вторых, наибольшее собственное значение A+B не превосходит суммы наибольших собственных значений A и B. А какие еще есть ограничения? В 1962 году Альфред Хорн выписал ряд неравенств на собственные значения матриц A, B и A+B и сформулировал гипотезу о том, что это полный набор условий. В 1999 году А.А.Клячко свел эту гипотезу к так называемой гипотезе о насыщении. Они же предложили описание неравенств Хорна при помощи диаграмм или «сот», которые имеют самое прямое отношение к теории представлений полной линейной группы GL(n).
Возможно ли в линейной алгебре получение новых результатов? Почему в университетах этот курс учат неправильно? Какое матричное разложение является самым важным? Об умножении матрицы на вектор, быстрых алгоритмах и сингулярном разложении. рассказывает доктор физико-математических наук Иван Оселедец.
Курс посвящён обобщению понятия вращения евклидова пространства. Оказывается, что с каждым евклидовым пространством можно связать новое пространство, объекты которого называются спинорами. Между исходным пространством и пространством спиноров имеется замечательная связь: всякому вращению исходного пространства можно сопоставить преобразование пространства спиноров, определённое однозначно с точностью до знака. Получаемые таким образом преобразования пространства спиноров образуют группу, называемую спинорной группой.