При передаче и хранении информация портится (шум в телефонной трубке, ошибки жесткого диска и так далее). Чтобы восстановить исходное сообщение в систему передачи следует ввести избыточность, иными словами, передавать вместо него более длинное закодированное сообщение. Так возникает понятие корректирующего кода (кода, исправляющего ошибки). Математически это приводит к задаче упаковки шаров в конечномерном векторном пространстве над конечным полем. Эта задача, в свою очередь, оказывается в значительной части эквивалентна проблеме расположения точек в проективном пространстве “в наиболее общем положении”. Здесь уже недалеко и до алгебраической геометрии. Конструкцию кодов по алгебраической кривой нетрудно рассказать, когда эта кривая — прямая.
Цфасман Михаил Анатольевич, доктор физико-математических наук, профессор.
Летняя школа «Современная математика», г. Дубна
29 июля 2003 г.
Теория кодирования – это отличный повод поговорить о красивых задачах из алгебры и комбинаторики, о линейной алгебре и алгебраической геометрии над конечными полями, конечных геометриях, простых группах и алгоритмах, связанных с передачей информации. Программа курса: Основные задачи теория кодирования. Коды, исправляющие ошибки. Расстояние Хемминга и неравенство треугольника. Предварительные сведения из алгебры. Строение конечных полей. Линейная алгебра над конечными полями. Линейные коды и их характеристики. Код Хемминга. Совершенные коды. Двойственный код и тождество Мак-Вильямса. Эквивалентность кодов. Методы вычисления минимального расстояния для подпространства. Циклические коды и главные идеалы. Алгеброгеометрические коды. Грассманианы и плюккеровы координаты. Грассмановы коды и минимальные расстояния. Точки на минимальной сфере. Алгоритмы декодирования. Синдромы и минимальные представители. Коды Голея. Конечные геометрии и группы Матье.
Каждый день мы пользуемся банковскими картами и даже не подозреваем, как легко с них украсть деньги. На лекции вы узнаете простейшие способы защиты денежного кусочка пластика.
Алгебраическая геометрия — раздел математики, который объединяет алгебру и геометрию. Главным предметом изучения классической алгебраической геометрии, а также в широком смысле и современной алгебраической геометрии, являются множества решений систем алгебраических уравнений. Современная алгебраическая геометрия во многом основана на методах общей алгебры (особенно коммутативной) для решения задач, возникающих в геометрии.
У древних греков было две никак не связанных между собой науки — арифметика и геометрия. В новое время математики осознали, что геометрические методы можно применять к арифметике, и наоборот. Двадцатый век пошёл много дальше. Сегодня целые числа для нас — геометрический объект ничуть не в меньшей степени, чем окружность. Осознание этого проходит через алгебру и алгебраическую геометрию. На этом пути была доказана великая теорема Ферма, но до неё мы, скорее всего в этих лекциях не дойдем. А впереди маячит гипотеза Римана, до которой не дойдём точно…
Теория информации — математическая дисциплина, в которой одновременно применяются методы многих разделов математики: теории вероятностей, теории алгоритмов, комбинаторики. Она занимается, в числе прочих, вопросами — как лучше всего сжать файл? Сколько информации может содержать данное сообщение? Как возможно точно передать сообщение, несмотря на помехи в канале связи? Как защитить сообщение от несанкционированного доступа? Ключевые идеи о том как решать перечисленные задачи были изложены в статье К. Шеннона «Математическая теория информации», где впервые было введено понятие энтропии (количества информации) и намечены контуры будущей теории. Мы займёмся введением в теорию сжатия дискретных данных (в отличие от непрерывных; там — своя специфика). Рассмотрим несколько алгоритмов, которые применяются в универсальных архиваторах (zip, rar). А также сделаем первые шаги (определим понятия и докажем начальные теоремы) на пути, ведущем к теоретическому обоснованию эффективности этих алгоритмов.
Энтропия — мера неопределённости, мера хаоса. В естественных науках это мера беспорядка системы, состоящей из многих элементов; в теории информации — мера неопределённости какого-либо опыта, процесса или испытания, которые могут иметь разные исходы (а значит, мера количества информации); в математике — мера сложности объекта или процесса. Понятие энтропии было впервые введено в 1865 году Р. Клаузиусом в термодинамике, К. Шенноном в теории информации в 1949 г., в теории стохастичпеских процессов Колмогоровым, Гельфандом и Яглом в 1956 г., в функциональном анализе и теории динамических систем Колмогоровым в 1956–1958 гг. Между мирами полной детерминированности, изучаемой классическим анализом и миром хаоса, изучаемым теорией вероятностей, ныне перекидывается мост, который связан с понятием энтропии.
RSA (аббревиатура от фамилий Rivest, Shamir и Adleman) — криптографический алгоритм с открытым ключом, основывающийся на вычислительной сложности задачи факторизации больших целых чисел. Алгоритм используется в большом числе криптографических приложений, включая PGP, S/MIME, TLS/SSL, IPSEC/IKE и других.
Для того чтобы применить математические средства для изучения информации, потребовалось отвлечься от смысла, содержания информации. Этот подход был общим для упомянутых нами исследователей, так как чистая математика оперирует с количественными соотношениями, не вдаваясь в физическую природу тех объектов, за которыми стоят соотношения.
Все слышали слово «синергетика», гораздо меньше народу знает, что это относится к закономерностям развития сложных неравновесных систем, и уж совсем немногие точно представляют себе, что это такое. Из первых рук нам об этом расскажет один из адептов синергетики в России, автор физической концепции «белок — машина», биолог и физик Дмитрий Чернавский.