Числа и арифметика. Что такое функция. Способы задания. Характерные особенности. Линейная функция. Принципы суперпозиции, на которых стоит вся физика. Квадратные уравнения. Теорема Виета. Ряд Фибоначчи. Корни из отрицательных чисел. Квадратный многочлен. Неравенство Коши — Буняковского. Деление многочленов и теорема Безу. Показательная функция. Вычислительный алгоритм для извлечения корней. Экспоненциальный рост. Десять в сотой — накрывает всю Вселенную. Логарифмы. Закон Вебера — Фехнера. Децибелы. Дифференциальные уравнения.
Если кто-то думает, что мы учимся строить графики, — то это для нас не главное. Мы рассчитываем на побочные результаты. Графики с модулями. Но это лишь повод. А речь об умении вообще строить графики, иметь дело с различными функциями и логически мыслить. На проделанную работу важно смотреть не как на ассортимент опробованных графиков, а как на совокупность методов и приёмов построения графиков, которые годятся совсем в других обстоятельствах. Стиль и логика мышления — вот что главное.
Он берет счеты: жжжжжжжжжжжжжжжж — «Да», — соглашается он. И тут до меня доходит: он не знает чисел. Когда у тебя есть счеты, не нужно запоминать множество арифметических комбинаций; нужно просто научится щелкать костяшками вверх-вниз. Нет необходимости запоминать, что 9 + 7 = 16; ты просто знаешь, что когда прибавляешь 9, то нужно передвинуть десятичную костяшку вверх, а единичную — вниз. Поэтому основные арифметические действия мы выполняем медленнее, зато мы знаем числа.
Соответствия между множествами. Определение функции. Способы задания функции. Табличный способ задания функции. Задание функции формулой. График прямой и обратной пропорциональности. Определение линейной функции. График линейной функции. Угловой коэффициент прямой. Графическое решение системы уравнений. Функция квадратичной зависимости (парабола). СССР, Киевнаучфильм, 1975 г.
Почему минус один умножить на минус один равно плюс один? Почему минус один умножить на плюс один равно минус один? Проще всего ответить: «Потому что таковы правила действий над отрицательными числами». Правила, которые мы учим в школе и применяем всю жизнь. Однако учебники не объясняют, почему правила именно такие. Мы сначала постараемся понять это, исходя из истории развития арифметики, а потом ответим на этот вопрос с точки зрения современной математики.
Аристотель и Галилей о падении тел. Силы трения. Скольжение и качение. Статика, кинематика. Векторная природа сил и скоростей. Сложение и разложение. Независимость действий и движений. Сохранение количества движения. Момент силы и момент импульса. Гироскопы. Скамейка Жуковского. Вращательное движение. Момент силы и момент импульса в плоском варианте вращения. Вращение твёрдого тела и момент инерции. Работа, энергия, законы сохранения. Неинерциальные системы и силы. Центробежный эффект. Сила Кориолиса. Задача Эйнштейна о чаинках. Атмосферное давление. Законы Паскаля и Архимеда. Парадокс Архимеда.
Игры и смешанные стратегии. Задача о покупке акций на рынке ценных бумаг. Увеличение гарантированного выигрыша за счёт приобретения убыточных акций. Равновесие по Нэшу как индивидуально разумное решение игры. Почему реальные системы часто «сидят» в таком равновесии. Рыночная модель. Дилемма заключённого. Игровые ситуации, где в первую очередь играет роль психология.
Речь о теореме Брауэра и её обобщениях. В поле зрения теорема о еже, фиксирующая невозможность причесать сферу без макушки. Эффективность инструмента (степень отображения, вращение векторного поля) иллюстрируется также на задачах о единственности решения и о количестве решений.
Исходные понятия. Полиномиальные и экспоненциальные алгоритмы. Задачи распознавания и оптимизации. Определение классов P и NP. Совпадает ли P с NP или не совпадает — вопрос на миллион долларов. Машина Тьюринга как универсальный вычислительный прибор. Опорные комбинаторные задачи: коммивояжера, клика, изоморфизм графов, паросочетание, рюкзак, целочисленное линейное программирование (ЦЛП), транспортная задача. В двух словах о непрерывной задаче линейного программирования. Теорема Кука.
Теория функций и функциональный анализ – уникальная дисциплина второго круга математического образования, осваивая которую человек вдруг понимает, что ещё вчера за деревьями леса не видел. Это другой этаж мышления, виденья, понимания. Чтобы днём увидеть звёзды, надо опуститься в глубокий колодец. В основе изложения лежит стандартный скелет: метрические, нормированные и топологические пространства; теория меры, интеграл Лебега; компактные и предкомпактные множества; линейные операторы в банаховых и гильбертовых пространствах; спектральная теория; обобщённые функции; элементы нелинейного анализа.